Model Error in Contingent Claim Models Dynamic Evaluation
Nous incorporons formellement l'incertitude des paramètres et l'erreur de modèle dans l'estimation des modèles d'option et la formulation de prévisions. Ceci permet l'inférence de fonctions d'intérêt (prix de l'option, biais, ratios) cohérentes avec l'incertitude des paramètres et du modèle. Nous montrons comment extraire la distribution postérieure exacte (de fonctions) des paramètres. Ceci est crucial parce que l'utilisation la plus probable, réestimation périodique des paramètres, est analogues à des échantillons de petite taille et demande l'incorporation d'informations a priori spécifiques. Nous développons des modèles Monte Carlo de chaînes markoviennes afin de résoudre les problèmes d'estimation posés. Nous fournissons des tests de spécification, à la fois pour l'échantillon et le modèle prédictif, qui peuvent être utilisés pour les tests dynamiques et les systèmes de trading en utilisant l'information en coupe transversale et temporelle des données d'option. Finalement, nous généralisons la distribution d'erreurs en tenant compte de la (faible) probabilité qu'une observation ait une plus grande probabilité d'erreur. Cela fournit pour chaque observation la probabilité d'une donnée aberrante et peut aider à différencier erreur de modèle et erreur de marché. Nous appliquons ces nouvelles techniques aux options d'équité. Quand l'erreur de modèle est prise en considération, le Black-Scholes apparaît très robuste, en contraste avec les études précédentes qui, au mieux, incluait l'erreur de paramètre. Après, nous étendons le modèle de base, i.e. Black-Schles, par des fonctions polynomiales des paramètres. Cela permet des tests intuitifs de spécification. Les erreurs en échantillon du B-S sont améliorées par l'utilisation de ces simples modèles étendus,0501s cela n'apporte pas d'amélioration majeure dans les prédictions hors-échantillon. Quoi qu'il en soit, les différences entre ces modèles peuvent être importantes parcequ'elles produisent différentes fonctions d'intérêt telles que les ratios et la probabilité d'erreur d'évaluation.
[ - ]