Temporal Aggregation of Volatility Models
Dans cet article, nous considérons l'agrégation temporelle des modèles de volatilité. Nous introduisons une classe de modèles de volatilité semi-paramétrique dénommée SR-SARV et caractérisée par une variance stochastique ayant une dynamique autorégressive. Notre classe contient les modèles GARCH usuels ainsi que plusieurs variantes asymétriques. De plus, nos modèles à volatilité stochastique sont caractérisés par des moments conditionnels observables et à plusieurs horizons. La classe des modèles SR-SARV est une généralisation naturelle des modèles GARCH faibles. Notre extension présente quatre avantages: i) nous ne supposons pas que le moment d'ordre quatre est fini; ii) nous permettons des asymétries (de type skewness et effet de levier) qui sont exclues par les modèles GARCH faibles; iii) nous dérivons des restrictions sur des moments conditionnels utiles pour l'inférence non-linéaire; iv) notre cadre de travail nous permet d'étudier l'agrégation temporelle des modèles IGARCH ainsi que des modèles non linéaires comme le modèle EGARCH et les modèles exponentiels à volatilité stochastique en temps discret et continu.
[ - ]