A Monte-Carlo Method for Optimal Portfolios
Cet article établit des résultats nouveaux sur (i) la structure des portefeuilles optimaux, (ii) le comportement des termes de couverture et (iii) les méthodes numériques de simulation en la matière. Le fondement de notre approche repose sur l'obtention de formules explicites pour les dérivées de Malliavin de processus de diffusion, formules qui simplifient leur simulation numérique et facilitent le calcul des composantes de couverture des portefeuilles optimaux. Une de nos procédures utilise une transformation des processus sous-jacents qui élimine les intégrales stochastiques de la représentation des dérivées de Malliavin et assure l'existence d'une approximation faible exacte. Cette transformation améliore alors la performance des méthodes de Monte-Carlo lors de l'implémentation numérique des politiques de portefeuille dérivées par des méthodes probabilistes. Notre approche est flexible et peut être utilisée même lorsque la dimension de l'espace des variables d'états sous-jacentes est large. Cette méthode est appliquée dans le cadre de modèles bivariés et trivariés dans lesquels l'incertitude est décrite par des mouvements de diffusion pour le prix de marché du risque, le taux d'intérêt et les autres facteurs d'importance. Après avoir calibré le modèle aux données nous examinons le comportement du portefeuille optimal et des composantes de couverture par rapport aux paramètres tels que l'aversion au risque, l'horizon d'investissement, le taux d'intérêt et le prix de risque du marché. Nous démontrons l'importance des demandes de couverture. L'aversion au risque et l'horizon d'investissement émergent comme des facteurs déterminants qui ont un impact substantiel sur la taille du portefeuille optimal et sur ses propriétés économiques.
[ - ]