Nonlinearity and Temporal Dependence
Les non-linéarités dans les coefficients de mouvement et de diffusion ont une incidence sur la dépendance temporelle dans le cas des modèles de diffusion scalaire. Nous examinons ce lien en recourant à deux notions de dépendance temporelle : mélange β et mélange ρ. Nous démontrons que le mélange β et le mélange ρ avec dégradation exponentielle constituent des concepts fondamentalement équivalents en ce qui a trait aux diffusions scalaires. Pour ce qui est des diffusions stationnaires qui ne se classent pas dans le mélange ρ, nous démontrons qu'elles appartiennent quand même au mélange β, sauf que les taux de dégradation sont lents plutôt qu'exponentiels. Pour ce genre de processus, nous recourons à des transformations des états de Markov dont les variations sont finies, mais dont les densités spectrales sont infinies à la fréquence zéro. Certains états ont des densités spectrales qui divergent à la fréquence zéro de la même façon que dans le cas des processus stochastiques à mémoire longue. En terminant, nous indiquons la façon dont l'échantillonnage de Poisson qui est non linéaire et dépendant de l'état modifie la distribution inconditionnelle et la dépendance temporelle.
[ - ]