Learning from Partial Labels with Minimum Entropy
Cet article introduit le régularisateur à entropie minimum pour l'apprentissage d'étiquettes partielles. Ce problème d'apprentissage incorpore le cadre non supervisé, où une règle de décision doit être apprise à partir d'exemples étiquetés et non étiquetés. Le régularisateur à entropie minimum s'applique aux modèles de diagnostics, c'est-à-dire aux modèles des probabilités postérieures de classes. Nous montrons comment inclure d'autres approches comme un cas particulier ou limité du problème semi-supervisé. Une série d'expériences montrent que le critère proposé fournit des solutions utilisant les exemples non étiquetés lorsque ces dernières sont instructives. Même lorsque les données sont échantillonnées à partir de la classe de distribution balayée par un modèle génératif, l'approche mentionnée améliore le modèle génératif estimé lorsque le nombre de caractéristiques est de l'ordre de la taille de l'échantillon. Les performances avantagent certainement l'entropie minimum lorsque le modèle génératif est légèrement mal spécifié. Finalement, la robustesse de ce cadre d'apprentissage est démontré : lors de situations où les exemples non étiquetés n'apportent aucune information, l'entropie minimum retourne une solution rejetant les exemples non étiquetés et est aussi performante que l'apprentissage supervisé.
[ - ]