Stochastic Gradient Descent on a Portfolio Management Training Criterion Using the IPA Gradient Estimator
Dans cet article, nous jetons les bases pour l'apprentissage d'une stratégie de gestion d'un portefeuille de biens, de natures variées, et ne s'appuyant sur aucune supposition quant aux distributions des données financières. Ce modèle, basé sur l'utilisation d'un réseau de neurones, tente de capturer les tendances du marché. De plus, le modèle permet l'introduction d'un bruit stochastique au niveau des prix prévus par le réseau afin d'éviter les maxima locaux dans l'espace de décision. Dans ces conditions, nous démontrons que notre stratégie d'investissement suit un processus de décision markovien qui est presque sûrement lipchitzien en ses paramètres. Ainsi, l'estimateur du gradient IPA, obtenu ici par la méthode classique de rétropropagation, peut être utilisé pour approcher, par une descente de gradient, un maximum local de notre critère d'apprentissage, le Sharpe ratio.
[ - ]