Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions
L'estimation des processus de diffusion (affine ou à sauts) est problématique car l'expression de la vraisemblance n'est pas disponible. D'un autre côté, la fonction caractéristique de ces modèles est souvent connue. Cet article propose un estimateur du type méthode des moments généralisés (GMM) fondé sur la fonction caractéristique. Comme l'on dispose d'un continuum de conditions de moments, on utilise une méthode spécifique appelée C-GMM. On dérive les propriétés asymptotiques de l'estimateur et discute son implémentation en pratique. Dans le contexte d'un processus markovien, une condition de moment conditionnelle résulte de la fonction caractéristique conditionnelle. Une question importante est le choix de l'instrument optimal. On montre que, lorsque l'instrument est une fonction exponentielle, l'estimateur C-GMM est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance. Il faut noter que la méthode C-GMM n'est pas limitée aux processus markoviens et s'applique à des modèles dynamiques très généraux. De plus, on propose une méthode des moments simulés qui permet de traiter le cas où l'expression de la fonction caractéristique n'est pas connue. Finalement, une étude de Monte Carlo sur des modèles fréquemment utilisés en finance montre que notre estimateur a de bonnes propriétés.
[ - ]