Multi-Task Learning For Option Pricing
L'apprentissage multi-tâches est une manière d'apprendre des particularités d'un domaine (le biais) qui comprend plusieurs tâches possibles. On entraîne simultanément plusieurs modèles, un par tâche, en imposant des contraintes sur les paramètres de manière à capturer ce qui est en commun entre les tâches, afin d'obtenir une meilleure généralisation sur chaque tâche, et pour pouvoir rapidement généraliser (avec peu d'exemples) sur une nouvelle tâche provenant du même domaine. Ici cette commonalité est définie par une variété affine dans l'espace des paramètres. Dans cet article, nous appliquons ces méthodes à la prédiction du prix d'options d'achat de l'indice S&P 500 entre 1987 et 1993. Une analyse de la variance des résultats est présentée, démontrant des améliorations significatives de la prédiction hors-échantillon.
[ - ]