Cost Functions and Model Combination for VaR-based Asset Allocation using Neural Networks
Nous introduisons un cadre d'allocation d'actifs basé sur le contrôle actif de la valeur à risque d'un portefeuille. À l'intérieur de ce cadre, nous comparons deux paradigmes pour faire cette allocation à l'aide de réseaux de neurones. Le premier paradigme utilise le réseau de neurones pour faire une prédiction sur le comportement de l'actif, en conjonction avec un allocateur traditionnel de moyenne-variance pour la construction du portefeuille. Le deuxième paradigme utilise le réseau pour faire directement les décisions d'allocation du portefeuille. Nous considérons une méthode qui accomplit une sélection de variable douce sur les entrées, et nous montrons sa très grande utilité. Nous utilisons également des méthodes de combinaison de modèles (comité) pour choisir systématiquement les hyper-paramètres pendant l'entraînement. Finalement, nous montrons que les comités utilisant les deux paradigmes surpassent de façon significative les performances d'un banc d'essai du marché.
[ - ]