Markovian Processes, Two-Sided Autoregressions and Finite-Sample Inference for Stationary and Nonstationary Autoregressive Processes
Dans cet article, nous proposons des procédures d'inférence valides à distance finie pour des modèles autorégressifs (AR) stationnaires et non-stationnaires. La méthode suggérée est fondée sur des propriétés particulières des processus markoviens combinées à une technique de subdivision d'échantillon. Les résultats sur les processus de Markov (indépendance intercalaire, troncature) ne requièrent que l'existence de densités conditionnelles. Nous démontrons les propriétés requises pour des processus markoviens multivariés possiblement non-stationnaires et non-gaussiens. Pour le cas des modèles de régression linéaires avec erreurs autorégressives d'ordre un, nous montrons comment utiliser ces résultats afin de simplifier les propriétés distributionnelles du modèle en considérant la distribution conditionnelle d'une partie des observations étant donné le reste. Cette transformation conduit à un nouveau modèle qui a la forme d'une autorégression bilatérale à laquelle on peut appliquer les techniques usuelles d'analyse des modèles de régression linéaires. Nous montrons comment obtenir des tests et régions de confiance pour la moyenne et les paramètres autorégressifs du modèle. Nous proposons aussi un test pour l'ordre d'une autorégression. Nous montrons qu'une technique de combinaison de tests obtenus à partir de plusieurs sous-échantillons peut améliorer la performance de la procédure. Enfin la méthode est appliquée à un modèle de l'investissement aux États-Unis.
[ - ]