No unbiased Estimator of the Variance of K-Fold Cross-Validation
In statistical machine learning, the standard measure of accuracy for models is the prediction error, i.e. the expected loss on future examples. When the data distribution is unknown, it cannot be computed but several resampling methods, such as K-fold cross-validation can be used to obtain an unbiased estimator of prediction error. However, to compare learning algorithms one needs to also estimate the uncertainty around the cross-validation estimator, which is important because it can be very large. However, the usual variance estimates for means of independent samples cannot be used because of the reuse of the data used to form the cross-validation estimator. The main result of this paper is that there is no universal (distribution independent) unbiased estimator of the variance of the K-fold cross-validation estimator, based only on the empirical results of the error measurements obtained through the cross-validation procedure. The analysis provides a theoretical understanding showing the difficulty of this estimation. These results generalize to other resampling methods, as long as data are reused for training or testing.
[ - ]