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Résumé / Abstract

La rentabilité de l'intégration verticale entre une firme à l'amont et une
firme à l'aval dépend de la manière de poser la question, du nombre de firmes et du
type d'interaction entre les firmes intégrées et les firmes non-intégrées. Si l'on
n'impose aucune contrainte sur les transactions entre les firmes intégrées et les
firmes non-intégrées, alors les premières peuvent continuer à acheter l'input produit
par les firmes non-intégrées à l'amont afin de hausser les coûts des firmes non-
intégrées à l'aval. On montre que, même dans le cas où les firmes sont identiques,
il y a des équilibres asymétriques dans le jeu d'intégration.

Whether vertical integration between a downstrean oligopolist and
an upstream oligopolist is profitable for an integrated pair of firms is shown to
depend on how one formulates the questions, on the number of firms in each
oligopoly and on the type of interaction which is assumed between firms that are
integrated and firms that are not. In particular, it is shown that if no restriction
is put on trade between integrated and non integrated firms, integrated firms may
continue to purchase inputs from the non integrated upstream firms, with the
goal of raising their downstream rival's costs. Furthermore, even though firms
are identical, asymmetric equilibria, where integrated and non integrated firms
coexist, may actually arise as an outcome of the integration game.

Mots clé : Intégration verticale, jeu d'intégration, équilibre asymétrique

Key words : Integration vertical, integration game, asymmetric equilibria



1. Introduction

It is well known that the vertical integration of a downstream monopolist and an upstream

monopolist is pro¯table, in the sense that the pro¯t of the integrated entity will exceed

the combined pre-integration pro¯ts. The reason for this is that the presence of double

marginalisation results in the consumer being charged a price that exceeds the monopoly

price which would be chosen by the integrated ¯rm. We show in this paper that whether

the result still holds when the vertical integration occurs between a downstream oligopolist

and an upstream oligopolist depends on how the question is formulated, as well as on the

number of ¯rms in the oligopolies and the type of interaction allowed between those that

are integrated and those that are not. We show this using a simple linear demand example,

where ¯rms compete in quantities at both stages of production after having taken their

decisions whether to integrate or not.

In the case of successive oligopolists, there are in fact various pertinent ways of addressing

the question. A natural way consists in asking whether vertical integration constitutes a

dominant strategy, in the sense that it results in greater consolidated pro¯ts for the pair of

¯rms that integrate irrespective of the integration decision of the other ¯rms. A second way

consists in asking whether a situation where all ¯rms vertically integrate is superior to one

where no ¯rm does, in the sense that each is left better o®. This second question of course

raises the further question of whether such a situation can constitute an equilibrium. In other

words, is the total pro¯t earned by an integrated ¯rm from its upstream and downstream

divisions greater (or at least not smaller) than what the two divisions would jointly earn if

they operated as non integrated entities, given that the rest of the industry is integrated1.

1It is often presumed that the results for successive monopolists carry over to successive oligopolists. For
instance, Perry (1989), after having discussed the fact that vertical integration of successive monopolists
reduces the ¯nal price, thereby increasing joint pro¯ts and consumer welfare, states that \The analysis
and results would obviously be identical for forward integration by upstream oligopolists into a downstream
oligopoly." (see his footnote 13, page 199). Concerning pro¯ts this turns out to be true only in some cases and
to depend on the way the question is formulated. A number of authors have touched upon related questions.
Bonanno and Vickers (1988), Lin(1988) and Nakache and Soubeyran (1989a) ¯nd that when di®erentiated



To analyse those questions, we consider an integration game where in a ¯rst stage ¯rms

take the vertical merger decision based on the anticipated equilibrium pro¯ts that occur in

the subsequent production stages. This of course requires that we solve for situations where

integrated and non integrated ¯rms coexist, whether such situations will actually occur in

equilibrium or not. This in turn requires some assumption about the interaction between

integrated and non integrated ¯rms. We will generally assume that an integrated ¯rm can

freely purchase from or sell to the non integrated ¯rms. A striking result is that if some

¯rms are integrated and some not, an integrated ¯rm may choose to buy some of its inputs

from the non integrated upstream sector at a market price which exceeds its own upstream

marginal cost of production. The reason is that this drives up the downstream rivals' costs,

thus reducing downstream competition. Depending on the relative importance of integrated

¯rms in the downstream market, this reduction in downstream competition may more than

compensate for the higher input cost.

This result is obviously important when studying situations where, for whatever rea-

sons, integrated and non integrated ¯rms coexist. Often, the coexistence of integrated and

non integrated ¯rms is simply assumed in analysis of equilibrium foreclosure (for example

Salinger(1988) and Krattenkramer and Salop (1986)). We show here that such situations

may in fact arise as equilibria of the integration game, even though ¯rms are identical at

the outset. Furthermore, those asymmetric subgame perfect equilibria may feature the type

of raising rivals' costs strategy just described. It also turns out, however, that the mere

possibility of adopting such strategies out of (subgame perfect) equilibrium is important

in determining the type and characteristics of the equilibria that may arise out of the in-

goods producers and retailers compete in price, the equilibrium may dictate vertical separation. Under
quantity competition, Nakache and Soubeyran (1989b) also observe that in the duopoly case integration can
be a dominant strategy. Lin (1988, footnote 7, page 254) alludes to, without explaining, the possibility of
a prisoner's dilemma arising in a special case. Greenhut and Ohta (1979, footnote 9, page 140) implicitly
seem to envisage a similar situation, without explicitly recognizing it. Salinger (1988, pages 353{354), in a
model where vertically integrated and non integrated producers are exogenously made to coexist, ¯nds that
integration does not necessarily increase the joint pro¯ts of the integrated ¯rms.
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tegration game, whether or not such partially integrated situations can actually occur as

equilibria.

Our analysis clearly establishes that the answers to the questions posed at the outset

depend crucially on the number of ¯rms at each stage of production. To illustrate, we ¯nd

that with successive duopolists it is always pro¯table for a pair of downstream and upstream

¯rms to vertically integrate unilaterally, no matter what the other pair of ¯rms does. However

when both integrate, which turns out to be the only equilibrium to the integration game

in this case, the consolidated pro¯t of each is less than it would be if both chose not to

integrate. Hence we are in the presence of a prisoner's dilemma.2 If we simultaneously

increase the number of upstream and downstream ¯rms, then, when the number of ¯rms

gets large enough (¯ve of more in our linear example), to unilaterally integrate is not a

dominant strategy any more | whether it pays to integrate depends on how many pairs

it expects will integrate | and there are now two equilibria to the integration game, one

where everyone integrates and one where no one integrates. What was a prisoner's dilemma

becomes a coordination problem. Still other possibilities arise in the more general case where

the number of upstream and dowmstream ¯rms di®er. For instance, we ¯nd that when there

are two upstream ¯rms and more than two downstream ¯rms, if the two upstream ¯rms

each integrate a downstream ¯rm, they always make less than the joint pro¯t of the same

pair with no one integrated. However, depending on the number of downstream ¯rms, to

integrate may or may not be a dominant strategy; the only equilibrium may be for each to

integrate or for none to integrate; the only equilibria may be for one upstream ¯rm to be

integrated and the other not. On the other hand, if there were two downstream ¯rms and

more than two upstream ¯rms, the only equilibrium is for the two downstream ¯rms to be

integrated and each integrated ¯rm is then better o® than if none were integrated.

2The reason is that in the case of successive oligopolists, vertical integration will, by reducing the cost
of the input into the downstream production process, increase the degree of competition in the downstream
market, thus mitigating the gains from eliminating the double marginalisation.
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Since it is often explicitly assumed in the literature on vertical integration that an in-

tegrated ¯rm does not directly interact with independent upstream or downstream produc-

ers, we also brie°y consider the consequences of imposing complete foreclosure, whereby no

purchases or sales can occur between integrated and non integrated ¯rms. We show that

modelling the problem in this way does indeed have important consequences for the type

of equilibria that may arise in the integration game, even in situations where asymmetric

equilibria | with some ¯rms integrated and some not | cannot occur. For instance, if

the number of upstream and downstream ¯rms is initially the same, there may generally

coexist an equilibrium where all ¯rms are integrated and an equilibrium where none are. If

however complete foreclosure were imposed, there would exist no equilibrium where no ¯rm

integrates. To take another example, we ¯nd that when there are two upstream ¯rms and

more than two downstream ¯rms, if the two upstream ¯rms each integrate a downstream

¯rm they generally make less than the joint pro¯t of the same pair with no one integrated,

but not if foreclosure is imposed; full integration and non integration cannot generally coex-

ist as equilibria, but can when foreclosure is imposed; asymmetric equilibria, where only one

of the two upstream ¯rms integrates, can never occur when foreclosure is imposed, whereas

they can otherwise.

This paper is related in some respects to that of Salinger (1988). He also considers

successive oligopolies with competition in quantities at both stages. He however imposes

exogenously the coexistence of integrated and non integrated ¯rms and does not study the

integration game as such. More importantly perhaps, his explicit assumptions are such that

the integrated ¯rms choose not to trade in any way with the non integrated ¯rms (complete

foreclosure). Insightful analysis of equilibrium foreclosure have recently been proposed by

Ordover, Saloner and Salop (1990) and Hart and Tirole (1990). However both of those papers

focus exclusively on the case where upstream ¯rms compete in price3 thereby eliminating

3Along with the usual Bertrand competition, Hart and Tirole also allow for a more uneven distribution of
bargaining power between the upstream and downstream ¯rms. But in all cases the double marginalisation
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the double marginalisation e®ect, which is central to the question posed at the outset. They

also implicitly assume that when integrated and non integrated ¯rms coexist, the trade of

the integrated ¯rms with the non integrated one is restricted to non negative net sales of

inputs. As discussed above and as we will show below, allowing net sales of the upstream

product by the integrated ¯rms to be negative (i.e., purchases of input), as we do, turns out

to be not inconsequential.

We will neglect in this paper all welfare or direct policy discussions. Our aim is simply to

provide some new insight as to what determines the private pro¯tability of vertical integration

in the presence of double marginalisation.

In the next section we discuss the precise structure we are assuming for the integration

game. This is followed in section 3 by an analysis of the equilibria of the production sub-

games. Section 4 deals with the integration game as such. We end with a brief conclusion

in section 5.

2. The structure of the game

The vertical integration problem is modelled as a two stage game: an integration stage,

followed by a production stage. In a ¯rst stage, the existing ¯rms simultaneously decide

whether to vertically integrate or not. They take their decisions based on the anticipated

equilibrium pro¯ts resulting from the second stage. In the second stage, the ¯rms decide

how much to produce, taking as given the industry structure which results from the ¯rst

stage. We thus seek subgame perfect equilibria of the integration game.

The production decision itself has two substages, re°ecting the vertically related structure

of production. In the ¯rst substage, the vertically integrated ¯rms and the non integrated

upstream producers simultaneously decide on the quantity of the upstream good to produce.

motive for integration is neutralised by broadening the type of contractual arrangements (e.g., two-parts
tari®s.)
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In doing so, they face the derived demand for the upstream product anticipated from the

dowstream equilibrium decisions of the non integrated downstream ¯rms. In the downstream

substage, the integrated ¯rms and the non integrated downstream ¯rms compete in the

quantity produced of the ¯nal good, taking as given the price of the upstream good they

use as input and the consumer demand for the ¯nal good. The detailed modelling of each

of these substages is spelled out in the next section.

Although quite frequently encountered in the vertical integration literature, this sequen-

tial Cournot speci¯cation of the production game is somewhat arbitrary. When the number

of upstream and downstream ¯rms is small, one might want to view the determination of the

price of the upstream product as being the result of a multilateral bargaining game between

upstream and downstrean ¯rms. Our speci¯cation amounts to drastically simplifying this

multilateral bargaining process by implicitly assuming that the upstream ¯rms are in a posi-

tion to make take it or leave it o®ers. There are obviously many alternatives to this one-sided

bargaining speci¯cation. We believe however that this is an attractive and tractable way of

highlighting the double marginalisation e®ect inherent to the oligopolistic vertical structure.

The role of double marginalisation is the focus of the paper. It is true that non-linear

prices may take care of the double margin in some situations and hence remove incentives

to vertically integrate. This is clearly the case in a successive monopoly context. However

it remains to be shown that such contracts are always implementable in a more general

successive oligopoly context and, when implementable, that the resulting equilibrium non-

linear contracts would in fact completely eliminate the double margin. Thus we believe

that double marginalisation remains an important consideration in the analysis of vertical

integration.
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3. The equilibria of the production subgames

Consider a situation where, in the absence of vertical integration, nd ¸ 2 downstream ¯rms

transform one for one the homogeneous output of nu ¸ 2 upstream ¯rms into a homogeneous

¯nal product which they then sell to the consumers. Assume for simplicity that there are

no costs to produce the upstream good nor to transform it into the ¯nal product. The

downstream ¯rms pay a price w for their input, which they take as given, and sell the ¯nal

product at price p.

The inverse demand for the ¯nal product is given by p = 1 ¡ Y , where Y =
Pnd

i=1
yi is

the total downstream output, yi being the individual output. Hence downstream ¯rms each

receive pro¯ts of [1 ¡ Y ¡ w]yi, i = 1; 2; : : : ; nd. They compete in quantities, so that the

downstream market is an nd-¯rm Cournot oligopoly with identical marginal costs of w. It

is a simple matter to verify that equilibrium in this downstream market requires that each

downstream ¯rm produce yi = (1¡ w)=(nd + 1), for a total of Y = nd(1 ¡ w)=(nd + 1).

Let X =
P

nu

i=1
xi denote the total upstream production, with xi representing the pro-

duction of upstream ¯rm i. Since downstream ¯rms transform the upstream product one

for one, we must have Y = X. The derived inverse demand faced by the upstream in-

dustry is therefore w = 1 ¡ (nd + 1)X=nd and hence upstream ¯rm i receives a pro¯t of

[1 ¡ (nd + 1)X=nd]xi. The nu upstream ¯rms also compete in quantity and it is easily es-

tablished that the only equilibrium is for each to produce xi = nd=(ndnu + nd + nu + 1).

Hence X = nund=(ndnu + nd + nu + 1) = Y , w = (nd + 1)=(ndnu + nd + nu + 1) and

p = (nd + nu + 1)=(ndnu + nd + nu + 1).

Allow now for the possibility of some upstream and downstream pairs of ¯rms being

vertically integrated. Letm · minfnu; ndg designate the number of such vertically integrated

entities. At one extreme we may havem = 0. This is the situation just discussed, where there

are no vertically integrated ¯rms. At the other extreme is the situation where the maximum

number of possible pairwise vertical integrations occur. We will call this full integration,
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which arises whenever m = minfnu; ndg.

Consider a situation of full integration. We may then have either nd · nu or nu < nd and

must discuss the two seperately. Whenever nd · nu, there will then be no demand for inputs

from independent upstream ¯rms and we simply have an nd-¯rm Cournot oligopoly, with zero

marginal costs. The equilibrium is symmetric and has each ¯rm producing yi = 1=(nd + 1).

Hence p = 1=(nd + 1). If when m ¯rms integrate we denote by ~¼(m;nd; nu) the equilibrium

joint pro¯ts of an upstream and a downstream non integrated ¯rms and by ¼̂(m;nd; nu) the

total equilibrium pro¯ts of an integrated ¯rm, then, from the above outcomes,

~¼(0; nd; nu) =
nd + n2

d
+ n2

u

(nd + 1)2(nu + 1)2
(3.1)

and

¼̂(nd; nd; nu) = 1=(nd + 1)2: (3.2)

Whenever nu < nd, we have to allow for the possibility that under full integration (m =

nu), the integrated ¯rms may wish to continue supplying the independent downstream ¯rms.

This is best analysed as a limiting case of the situation wherem 2 [1; nu] ¯rms are integrated,

with no constraint on net purchases of the integrated ¯rms from the non integrated sector.

Consider then the production equilibria when m ¯rms are integrated, with the number

of integrated ¯rms satisfying m 2 [1;minfnu; nd ¡ 1g], so that at least one downstream ¯rm

is non integrated. It will be convenient to let the ¯rms indexed i (without loss of generality,

i = 1;2; : : : ;m) be the ones that are integrated and let the ¯rms indexed j be the ones that

are not (j = m+1;m+2; : : : ; nu upstream and j = m+1;m+2; : : : ; nd downstream). Thus

the integrated ¯rms and the non integrated downstream ¯rms simultaneously determine the

quantities (yi and yj) of the ¯nal product in a ¯nal good production stage. This stage is

preceded by the upstream production stage, during which the non integrated upstream ¯rms

and the integrated ¯rms again compete in quantities taking into account the derived demand

resulting from the ¯nal good production decisions of the next stage. The decision variable of

the non integrated upstream ¯rms is the quantity it produces of the upstream good, xj. The

8



decision that matters for the integrated ¯rm in this stage is its net sales to the non integrated

sector, which we will denote si. We will let the quantity of the upstream product traded

between the non integrated ¯rms and the integrated ¯rms be determined endogenously with

no a priori restrictions put on the direction of this trade. Thus individual integrated ¯rms

may, if they wish, choose to sell inputs to non integrated downstream ¯rms or buy inputs

from non integrated upstream ¯rms and si may be either negative or positive. The total

pro¯t of an integrated ¯rm is (1 ¡ Y )yi + wsi, the pro¯t of a non integrated downstream

¯rm is (1¡ Y ¡ w)yj and that of a non integrated upstream ¯rm is wxj .

Taking into account the fact that at equilibrium the yi's will be the same for all integrated

¯rms and the yj's will be the same for all non integrated downstream ¯rms, the equilibrium

conditions for the downstream production stage can be written

1¡ (m+ 1)yi ¡ (nd ¡m)yj = 0 (3.3)

1 ¡myi ¡ (nd ¡m+ 1)yj = w; (3.4)

from which we derive yi = (1 + (nd ¡ m)w)=(nd + 1) and yj = (1 ¡ (m + 1)w)=(nd + 1).

Given that Y = myi + (nd ¡ m)yi, the market price of the ¯nal product will be p = (1 +

(nd ¡m)w)=(nd + 1).

The market demand for the upstream product comes from the nd ¡ m non integrated

downstream ¯rms. They will be supplied by the nu ¡ m non integrated upstream ¯rms,

that produce xj, (j = m+ 1; : : : ; nu), and potentially by the m integrated ¯rms, that have

net sales of input of si (i = 1; : : : ;m). The competition at the upstream stage is therefore

subject to the derived inverse demand4

w =
1

m+ 1

2
41 ¡ nd + 1

nd ¡m

0
@ mX
i=1

si +
nuX

j=m+1

xj

1
A
3
5 : (3.5)

Since, again, the si's will be the same for each integrated ¯rm, as will the xj's for each non

integrated upstream ¯rm, the conditions that must be satis¯ed by the equilibrium of the

4Notice that the derived inverse demand is de¯ned only for m < nd.
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upstream stage can be written

m¡1¡

"
(nd + 1)(m+ 1)2

nd ¡m
¡ 2m

#
si+

"
2(nu ¡m)¡

(nu ¡m)(nd + 1)(m+ 1)

nd ¡m

#
xj = 0 (3.6)

1¡
(nd + 1)(nu ¡m+ 1)

nd ¡m
xj ¡

(nd + 1)m

nd ¡m
si = 0: (3.7)

These are derived respectively from the ¯rst-order condition of the typical integrated ¯rm and

that of the typical non integrated upstream ¯rm. We discuss the solution in the Appendix.

Let (si(m;nd; nu); xj(m;nd; nu)) denote the unique solution to (6) and (7). Substituting

into (5), we get

w(m;nd; nu) =
1

m+ 1

·
1¡

nd + 1

nd ¡m
[msi(m;nd; nu) + (nu ¡m)xj(m;nd; nu)]

¸
: (3.8)

The pro¯t of an integrated ¯rm will be

¼̂(m;nd; nu) =

Ã
1 + (nd ¡m)w(m;nd; nu)

nd + 1

!
2

+ w(m;nd; nu)si(m;nd; nu) (3.9)

while the joint pro¯t of an upstream and downstream non integrated pair will be

~¼(m;nd; nu) =

Ã
1¡ (m+ 1)w(m;nd; nu)

nd + 1

!2

+ w(m;nd; nu)xj(m;nd; nu) (3.10)

The subgame perfect equilibrium pro¯t of the production stages for m 2 [1;minfnu; nd¡1g]

can be calculated by simply substituting for w(m;nd; nu), si(m;nd; nu) and xj(m;nd; nu).

This includes ¼̂(nu; nd; nu), the full integration pro¯t when nu < nd,

4. The equilibria of the integration game

Consider now the integration decisions. These are assumed to be based on the pro¯ts ex-

pected from the subgame perfect equilibria of the upstream and downstream production

stages, as just calculated. To simplify matters and avoid unnecessary repetition, we will

think of the integration game as being played by the downstream ¯rms when nd · nu and by

the upstream ¯rms when nu < nd. In the ¯rst case, each downstream ¯rm decides whether to

10



integrate one upstream ¯rm whereas in the second case each upstream ¯rm decides whether

to integrate one downstream ¯rm.

It is useful to consider ¯rst the case of successive equal size oligopolies (i.e., nu = nd = n).

In addition to serving as an important reference case, this will help in providing some insight

into the nature of the equilibria that may arise. It is also useful in relating our results to

some of the literature on vertical integration, since the often studied successive duopolies

scenario is a special subcase. We will afterwards consider the case of nu 6= nd and show how

the relative size of the upstream and downstream industries matters.

4.1. The case of nu = nd = n

When nu = nd = n, then from (1) the consolidated pro¯ts of an upstream and a downstream

pair of ¯rms when no ¯rm is integrated is

~¼(0; n;n) =
(2n+ 1)n

(n+ 1)4
(4.1)

and from (2), the pro¯t of an integrated ¯rm when all the ¯rms are integrated is

¼̂(n; n; n) = 1=(n+ 1)2: (4.2)

Since (2n+1)n=(n+1)2 > 1 for any n ¸ 2, we immediately have ~¼(0; n; n) > ¼̂(n; n; n) and

hence

Proposition 1. With successive n-¯rm oligopolies, the ¯rms are always better o® if none

integrates than if they all integrate.

In other words, in the situation where no one vertically integrates, the consolidated pro¯ts of

a pair of upstream and downstream ¯rms is always greater than the pro¯t of the integrated

pair when everyone integrates. In this sense, therefore, vertical integration never increases

pro¯ts, no matter what the number of ¯rms is.

In order to address the question as to which, if any, of those two situations can constitute

a Nash-equilibrium of the integration game, we must make use of the production equilibria

11



under asymmetric situations, where some but not all ¯rms are integrated (m 2 [1; n ¡ 1]).

First note that, as shown in the Appendix from the solution for si(m;n;n),

si
>
=
<
0 ,

m

n ¡m

>
=
<

1

2

2
41 +

vuut1 +
4(3(n¡m) + 1)

(n¡m)2

3
5 : (4.3)

Thus, somewhat surprisingly, si may be either negative or positive in this production equi-

librium. If si is negative, then each integrated ¯rm chooses to make net purchases of the

input from the non integrated upstream ¯rms at a positive price w even though it can supply

itself internally at zero cost. The reason is that in doing so it pushes up the price of the

upstream input for the non integrated downstream ¯rms, thereby reducing competition at

the downstream stage. The increase in equilibrium downstream pro¯t this generates more

than compensates the extra cost of the external supply. This is clearly a case of a \raising

rivals' costs" strategy (Salop and She®man, 1983). As is clear from (13), this requires that

the number of integrated ¯rms be su±ciently small relative to the number of non integrated

¯rms. A su±cient (though not necessary) condition for the cost raising strategy to work

is that the number of non integrated ¯rms be at least as large as the number of integrated

¯rms5.

When the number of non integrated ¯rms is small relative to the number of integrated

¯rms6 then it does not pay to adopt a raising rivals' costs strategy and the integrated ¯rms

will choose to make positive net sales to the downstream non integrated ¯rms. The reason

is that when the non integrated downstream ¯rms do not constitute a su±ciently important

part of the downstream market, the relatively small gain from the reduction in competition to

be had from raising their costs is spread across a relatively large number of integrated ¯rms.

The reduction in competition does not generate enough gains to the individual integrated

¯rm to compensate its expense in supporting the cost raising strategy.

5The phenomenon of overbuying in the external input market after vertical integration in order to raise
the rival's input costs has also been noted by Ayers (1987) in the context of successive duopolies.

6To take a few examples, with 1 out of n ¸ 4 non integrated ¯rms, 2 out of n ¸ 6, 3 out of n ¸ 8 or 4
out of n ¸ 11, then sj > 0.
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Using (9) and (10) and the solutions for w(n; n; n), si(n; n; n) and xj(n; n; n) we can

state a number of propositions characterizing the integration decisions in the case where

nd = nu = n. The tedious algebra involved in their proofs is relegated to the Appendix.

Proposition 2. When nu = nd = n, there always exists an equilibrium where all ¯rms are

vertically integrated.

Proof: The proof involves showing that for all n ¸ 2, ¼̂(n; n; n) ¸ ~¼(n ¡ 1; n; n). The

equality in fact holds strictly, so that vertical integration always increases the joint pro¯ts

of a pair of ¯rms if all the other pairs of ¯rms are already integrated.

Proposition 3. When nu = nd = n, then, if and only if n ¸ 5, there exists an equilibrium

where no ¯rms are vertically integrated.

Proof: The proof involves showing that ~¼(0; n; n) ¸ ¼̂(1; n;n) for all n ¸ 5. Again, the

inequality turns out to hold strictly.

Proposition 4. When nu = nd = n, to vertically integrate is a dominant strategy when

n · 4, but not when n ¸ 5.

Proof: That vertical integration is not a dominant strategy for n ¸ 5 follows as a corollary of

Propositions 3 and 1. That it is for n · 4 involves showing that ¼̂(m+1; n; n) > ~¼(m;n;n),

for all m 2 [0; n¡ 1] and n = 2; 3; 4.

Proposition 4 means that if nu = nd = n · 4, it is always pro¯table for an upstream-

downstream pair of ¯rms to integrate no matter what the other ¯rms do. It follows that

for all ¯rms to integrate is the unique equilibrium in that situation. By Proposition 1, ¯rms

then face a prisoner's dilemma: although full integration is the unique equilibrium, each

would be better o® if no one would integrate. However, as the number of ¯rms increases,

the downstream mark-up falls and so does the gain from unilaterally integrating a pair of

¯rms. This explains why, as stated in Proposition 3, it also is an equilibrium for no one
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to integrate if nu = nd ¸ 5. By proposition 1, what was a prisoner's dilemma for n · 4

therefore becomes a coordination problem for n ¸ 5: although everyone is better o® if no

one integrates, this is not the unique equilibrium.

For n ¸ 5, we have just shown that there are at least two equilibria, both symmetric

(m = 0 and m = n). There remains the possibility of some equilibria with m 2 [1; n ¡ 1]

when n ¸ 5. An equilibrium where m pairs of ¯rms are integrated and n¡m pairs are not,

with m 2 [1; n ¡ 1], will exist if and only if

¼̂(m;n; n) ¸ ~¼(m¡ 1; n; n) and ¼̂(m+ 1; n; n) · ~¼(m;n; n):

De¯ne D(z; n) = ¼̂(z+1; n; n)¡ ~¼(z; n; n). It follows from the above two conditions that for

such an equilibrium to exist, there must be some admissible z¤ such that D(z¤ ¡ 1; n) ¸ 0

and D(z¤; n) · 0. It can be veri¯ed numerically that, for n 2 [5; 1000], this is not the case.

In fact, for n in that range, D(z;n) ¡D(z ¡ 1; n) > 0 for all admissible z. It seems safe to

conjecture that when nu = nd = n, there exist no asymmetric equilibria, where some but

not all ¯rms vertically integrate.

All of the above propositions have been obtained in a context where the net sales to the

non integrated ¯rms by the integrated ¯rms is determined endogenously. Since complete

foreclosure (si = 0) is often simply assumed in the analysis of successive oligopolists7, it

seems appropriate to brie°y consider what is the impact of such an assumption8. This can

be summarized in the following proposition.

Proposition 5. When nu = nd = n, if complete foreclosure is exogenously imposed then

there always exists an equilibrium where all the ¯rms are integrated and there never exists

an equilibrium where none of the ¯rms are integrated.

7Amongst the papers cited here, for instance, this is true of Bonanno and Vickers (1988), Greenhut and
Ohta (1979), Lin (1988), Salinger (1988), and Nakache and Soubeyran (1989a and 1989b).

8It can be tempting to assume at least si ¸ 0, as is implicitly the case in Ordover, Saloner and Salop
(1990) and Hart and Tirole (1990). At ¯rst thought this assumption appears innocuous, since the integrated
¯rm can supply itself internally at zero marginal cost and hence raises its own cost by choosing si < 0. But,
as we have shown above, this neglects any gains which may arise from the e®ect on the downstream rivals'
competitiveness of setting si < 0.
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Proof: The details of the proof are left for the Appendix.

Numerical simulations (for n 2 [2; 1000]) also lead us to conjecture that to integrate

vertically always is a dominant strategy when foreclosure is imposed, so that the equilibrium

where all n pairs of ¯rms integrate would be the only equilibrium to the integration game.

Proposition 1 obviously still holds, since, with nd = nu = n, foreclosure changes neither

¼̂(m;n; n)) nor ~¼(0; n; n).

To understand why the situation where no ¯rm integrates would not be an equilibrium

any more, recall that if a single pair of ¯rms chooses to integrate when foreclosure is not

imposed, then it would choose to make net purchases from the non integrated upstream

¯rms, i.e., set si negative. This follows from (13). But this means that if this lone integrated

¯rm could credibly commit to si = 0, it would move itself closer to the outcome it would

choose were it to be a Stackelberg leader in the upstream stage, which can be veri¯ed to

involve si > 0 in that case. It would therefore make greater pro¯ts. This is exactly what

the exogenous constraint accomplishes, thereby su±ciently raising the pro¯ts that a lone

integrated ¯rm can realize to make it attractive to unilaterally deviate when it otherwise

was not, i.e., when n was ¯ve or more. Hence whether or not complete foreclosure is assumed

at the outset can have important consequences for the type of equilibria that may arise in

the integration game. This is true even when, as is the case with nu = nd = n, the eventual

outcome of this game does not involve coexistence of integrated and non integrated ¯rms.

But just as the Stackelberg outcome requires that the ¯rm be able to credibly precommit to

it, so would, in a situation which dictates si < 0 in equilibrium, a strategy of foreclosure.

Finally, a word is in order about the perhaps over-studied successive duopolies case.

In that case, the unique equilibrium is for the two upstream-downstream pairs of ¯rms to

vertically integrate. It in fact always pays for one pair of ¯rms to integrate no matter what

the other pair does. Each would however be better o® if no one would integrate and thus

the ¯rms face a prisoner's dilemma. Finally, the impact of modelling the vertical integration
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problem with si = 0 is then not apparent: although the equilibrium outputs will be changed

by this assumption, full integration remains a unique equilibrium. Therefore to assume

successive duopolies certainly generalizes in important respects the succesive monopolies

case, since it permits strategic considerations which are otherwise absent. However, from

the above propositions, it is clear that setting nu = nd = 2 involves some loss of generality.

4.2. The case of nu 6= nd

We now allow for di®erent numbers of ¯rms downstream and upstream. Two subcases are

relevant: that in which nu > nd and that in which nd > nu. The general solution for

production and sales decisions and for input price is provided in the Appendix. The thrust

of the e®ect of having nu 6= nd can however be observed by considering the case where

minfnu; ndg = 2. We will mainly restrict ourselves here to that case.

Consider ¯rst the case where nd > nu = 2. The two upstream ¯rms simultaneously decide

whether to integrate one downstream ¯rm on the basis of the anticipated subgame perfect

equilibrium pro¯ts of the two production stages. The main results of the integration game

in that case can be summarized in the following proposition.

Proposition 6. When nd > nu = 2, then

1. The pro¯t of an integrated ¯rm under full integration (m = 2) is always less than the

consolidated pro¯t of a non integrated pair of ¯rms when no one integrates (m = 0).

2. For nd = 3, to integrate is a dominant strategy and full integration (m = 2) is the only

equilibrium.

3. For nd = 4, the only equilibria are for one upstream ¯rm to integrate (m = 1), with

the other one remaining non integrated.

4. For nd ¸ 5, the only equilibrium is where no ¯rm integrates (m = 0).
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Proof: The full payo® matrices of the integration game are calculated in the Appendix

for nd = 3; 4;5 and can be seen to con¯rm 6.2, 6.3 and 6.4. It is also shown there that

~¼(0; nd; 2) > ¼̂(2; nd; 2) for all nd ¸ 2 | which proves 6.1 | and that ~¼(0; nd; 2) > ¼̂(1; nd; 2)

for all nd ¸ 5 | which completes the proof of 6.4.

The possibilities are therefore richer than in the case where nd = nu = n ¸ 2. It is still

true that everyone is better o® when no one vertically integrates. But now this may be the

only equilibrium. Indeed when nd is su±ciently large, it does not pay to integrate whenever

everyone else is integrated, as was always the case with nd = nu = n ¸ 2. Thus there are

now situations where, from all perspectives, vertical integration reduces joint pro¯ts.

A somewhat striking result is that even though both upstream and downstream ¯rms are

perfectly identical in all respects, asymmetric equilibria, where some but not all upstream

¯rms vertically integrate, may now arise in the integration game. The situation with nu = 2

and nd = 4 (see Proposition 6.3) is a case in point: in equilibrium, either upstream ¯rm 1

is integrated and upstream ¯rm 2 is not, or vice-versa. Thus di®erences in the decision to

vertically integrate can arise in equilibrium even though there are no inherent di®erences

among ¯rms9.

It is important to note that, with nu = 2, the net sales of input by an integrated ¯rm are

now given by:

si =

8>><
>>:

4(1¡ nd)
(1 + nd)(8 + 4nd)

if m = 1

nd ¡ 2
17 + 5nd

if m = 2

(4.4)

This means that with nd ¸ 3, when, as predicted by Proposition 6.2, all the upstream ¯rms

integrate (m = 2), they will choose to continue supplying the independent downstream ¯rms

(si > 0). The pro¯ts from the sales of the input at a price which exceeds marginal cost more

than o®sets the reduction in pro¯ts resulting from the increased downstream competition.

9This consequence of the strategic e®ect is not unlike that found recently in a vertically related framework
by Besanko and Perry (1993), when studying the equilibrium incentives by manufacturers to adopt exclusive
dealing. They ¯nd that di®erences in the extent to which ¯rms adopt exclusive dealing can arise in an
equilibrium among identical manufacturers.
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This also means that when only one of the upstream ¯rms is integrated, as will be the case

in equilibrium with nd = 4 (Proposition 6.3), it will always choose to raise its downstream

rivals' costs by purchasing inputs from the remaining non integrated upstream ¯rm (si < 0).

The case of nu = 2 and nd = 4 therefore provides an example where the raising rivals'

cost strategy of setting s < 0 would actually be observed as an outcome of an asymmetric

integration equilibrium. This is in contrast with situations where nd = nu = n, as in the case,

for instance, of successive duopolies. The only subgame perfect equilibria to the integration

game were then symmetric and therefore si < 0 could only occur as an outcome of an (out

of perfect equilibrium) production subgame.

The situation is much more favorable to integration in the case where nu > nd than in

the case where nd > nu. If full integration then occurs (m = nd), the market structure is

considerably altered, since the independent upstream ¯rms are left with no demand for their

product and have no choice but to shut down, leaving the integrated ¯rms in control of both

stages of production. As a result we have the following:

Proposition 7. When nu > nd = 2, then

1. For all nu ¸ 3, the pro¯t of an integrated ¯rm under full integration (m = 2) is always

greater than the consolidated pro¯t of a non integrated pair of ¯rms when no one

integrates (m = 0).

2. Full integration (m = 2) is the only equilibrium. It is in fact an equilibrium in dominant

strategies.

Proof: It is shown in the Appendix that ¼̂(2; 2; nu) > (<) ~¼(0;2; nu) for nu ¸ 3 (nu = 2)

| which proves 7.1 | and that ¼̂(2; 2; nu) > ~¼(1; 2; nu) and ¼̂(1; 2; nu) > ~¼(0; 2; nu) for all

nu ¸ 2 | which proves 7.2.

Part 1 of the Proposition is somewhat misleading since it suggests that the prisoner's

dilemma can occur only when nu · nd. This is not the case. For nd > 2, there is a range
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a values of nu > nd such that ¼̂(nd; nd; nu) < ~¼(0; nd; nu). But as nu gets large enough10, it

will be the case that ¼̂(nd; nd; nu) > ~¼(0; nd; nu). Beyond this threshold value of nu (which

increases with nd), vertical integration increases the joint pro¯t, from whichever perspective

we look at it: to integrate is a dominant strategy and each integrated pair is better o® if all

integrate.

If only one ¯rm were integrated, it would choose to purchase some of its inputs from the

non integrated upstream suppliers (si = 2(1 ¡ nu)=3(2 + 3nu) < 0). But as already noted,

under full integration (m = nd), si = 0 in this case. This means that if one had assumed

complete foreclosure (si ´ 0), part 1 of Proposition 7 would still hold. Furthermore, as

argued in section 4.1, if only one ¯rm were integrated, complete foreclosure would increase

the integrated ¯rm's pro¯t relative to the simultaneous equilibrium outcome of the upstream

stage, by moving it towards the Stackelberg outcome. It follows that if to integrate was a

dominant strategy with si < 0 it must also be a dominant strategy under complete foreclosure

and part 2 of Proposition 7 holds. To have imposed complete foreclosure when modelling

the production game would therefore have been of no consequence in this case for the types

of equilibria that may arise from the integration game.

Things are quite di®erent when nd > nu, as it was with nd = nu. In that case, to assume

complete foreclosure can have drastic e®ects on the type of integration equilibria that may

arise. To illustrate, assume nu = 2 as in Proposition 6. Then, for nd ¸ 3, one veri¯es (see

Appendix, part G) that part 1 of Proposition 6 does not hold11. One also veri¯es that no

asymmetric equilibria (m = 1) occur. Furthermore, while for nd = 3; 4; 5; full integration

(m = 2) is the only equilibrium, both full integration and no integration (m = 0) can coexist

as equilibria, as the case of nd = 6 illustrates.

10For example, when nd = 3, this occurs for nu ¸ 6. As one would expect, as nu tends to in¯nity and the
upstream mark-up when no one is integrated becomes negligible, ¼̂(nd; nd; nu) ¡ ~¼(0; nd; nu) tends to zero,
for there can then be no gain from integrating.

11It can hold for nu > 2 if nd is su±ciently large.
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5. Conclusion

Our results show that, generally, whether joint pro¯ts increase or not when an upstream and

a downstream ¯rm merge in the presence of double marginalization does depend on how we

formulate the question. Our results also show that it can depend crucially on the number of

upstream and downstream ¯rms there are in the industry initially and on the way we model

the market interaction of integrated and non integrated ¯rms. We have shown that when it

is assumed, as we do, that integrated ¯rms may freely trade with downstream and upstream

non integrated ¯rms, they may surprisingly choose to purchase inputs from independent

upstream ¯rms at a price which exceeds the marginal production cost of their own upstream

division. This raising rivals' costs strategy is a phenomenon which has some impact on the

nature of the integration equilibria, whether or not these equilibria involve coexistence of

integrated and non integrated ¯rms. We show that such asymmetric equilibria may in fact

arise even when ¯rms are identical.

20



Appendix

A. The solutions for si(m;nd; nu) and xj(md; nu), 1 ·m ·minfnu; nd¡
1g

Let

A =
(nd + 1)(m+ 1)2

nd ¡m
¡ 2m > 0

B = 2(nu ¡m)¡
(nu ¡m)(nd + 1)(m+ 1)

nd ¡m
< 0

C = m¡ 1 ¸ 0

D =
nd ¡m

m(n+ 1)
> 0

E =
nu ¡m+ 1

m
> 0:

Then the ¯rst-order conditions (6) and (7) are written

C ¡Asi +Bxj = 0 (A{1)

D ¡ si ¡ Exj = 0 (A{2)

and the unique solution is

(xj(m;nd; nu); si(m;nd; nu)) =

µ
AD ¡ C

AE +B
;
CE +BD

AE +B

¶
: (A{3)

We ¯rst verify that the denominator is positive:

AE +B = [((nu ¡m)(m+ 1) + 1)(nd + 1) + ((nd + 3)m+ 2)m]=m(nd ¡m) > 0:

This assures the stability of the solution, in the sense that the slope of the xj(si) curve

(from (A{2)) drawn in (xj; si)-space is steeper than that of the si(xj) curve (from (A{1)).

Furthermore,

AD ¡ C = [(m+ 1)(nd + 2m+ 1)]=m(nd + 1) > 0

which assures that xj(m;nd; nu) is positive.

As for the sign of si(m;nd; nu), it will be the same as that of CE + BD. When nd =

nu = n,

CE +BD =
m2

¡ (n¡m)m¡ 3(n¡m)¡ 1

m(n+ 1)

=
k2 ¡ k ¡ [3(n¡m) + 1]=(n¡m)2

k(n+ 1)
=

(k ¡ ¸1)(k ¡ ¸2)

k(n+ 1)

where k = m=(n¡m) and

¸1 =
1

2

2
41 +

vuut1 +
4(3(n¡m) + 1)

(n¡m)2

3
5 > 0; ¸2 =

1

2

2
41 ¡

vuut1 +
4(3(n¡m) + 1)

(n¡m)2

3
5 < 0:
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Since k > 0, k ¡ ¸2 > 0. Therefore sign(si) = sign(k ¡ ¸1), or

si(m;n; n)
>
=
<
0 ,

m

n¡m

>
=
<

1

2

2
41 +

vuut1 +
4(3(n¡m) + 1)

(n¡m)2

3
5 :

More generally,

si(m;nd; nu) = (m¡ nd)(1¡ 3m¡ 2m2
¡ (m¡ 1)nd + 2(m+ 1)nu)=¢ (A{4)

and

xj(m;nd; nu) = (nd ¡m)(m+ 1)(nd + 2m+ 1)=¢ (A{5)

where

¢ = (nd + 1)(1 +m+ 2m2
¡ (m¡ 1)nd + (m+ 1)(nd + 1)nu) > 0:

Substituting (A{4) and (A{5) into (8), we get

w(m;nd; nu) = (nd + 1)(nd + 2m+ 1)=¢: (A{6)

B. Proof of Proposition 2

We know that ¼̂(n;n;n) = 1=(n+ 1)2. From (10),

~¼(n ¡ 1; n; n) =

Ã
1¡ nw(n¡ 1; n; n)

n+ 1

!
2

+ w(n¡ 1; n;n)xj(n ¡ 1; n; n)

= ¼̂(n; n; n) +
w(n ¡ 1; n; n)

(n+ 1)2

h
n2w(n¡ 1; n; n)¡ 2n+ (n+ 1)2xj(n ¡ 1; n; n)

i
:

Therefore ¼̂(n; n; n) ¸ ~¼(n¡ 1; n; n) if and only if

n(nw(n ¡ 1; n; n)¡ 2) + (n+ 1)2xj(n¡ 1; n; n) · 0; (A{1)

where sj(n¡ 1; n; n), xj(n¡ 1; n; n) and w(n¡ 1; n; n) can be obtained directly from (A{4),

(A{5) and (A{6). After substitution and some simpli¯cations, we ¯nd that condition (A{7)

reduces easily to n[n(2n2 ¡ 2n¡ 3) + 5] ¸ 0, which holds strictly for all n ¸ 2. Q.E.D.

C. Proof of Proposition 3

We know that ~¼(0; n; n) = (2n+1)n=(n+1)4. After substituting for the values of si(1; n; n)

and w(1; n; n) obtained from (A{4) and (A{5) into (9), ¼̂(1; n; n) = (5n3 + 11n2 + 27n ¡

11)=4(n + 1)(n2 + n+ 2)2 and

~¼(0; n; n)¡ ¼̂(1; n; n) =
[3n6 + 22n + 11]¡ [6n5 + 27n4 + 56n3 + 11n2]

4(n+ 1)(n2 + n+ 2)2
: (A{1)

Both terms in brackets in the numerator are positive. One easily veri¯es numerically that

the ¯rst term is smaller than the second one for n = 2; 3; 4 but that it is larger for n = 5.

Since n6 is the term with the largest exponent, this must also be the case for all n > 5.

Hence (A{8) is positive for all n ¸ 5. Q.E.D.
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D. Proof of Proposition 5

When complete foreclosure (si = 0) is imposed, the solution is exactly that obtained in

Salinger(1988), which in our notation gives:

yi(m;nd; nu) =
1 + (nd ¡m)=(m+ 1)(nu ¡m+ 1)

nd + 1
(A{1)

yj(m;nd; nu) =
1¡ 1=(nu ¡m+ 1)

nd + 1
(A{2)

and

xj(m;nd; nu) =
nd ¡m

(nd + 1)(nu ¡m+ 1)
(A{3)

from which

w(m;nd; nu) =
1

(m+ 1)(nu ¡m+ 1)
(A{4)

and

p(m;nd; nu) =
1 + (nd ¡m)=(m+ 1)(nu ¡m+ 1)

nd + 1
: (A{5)

It is then straightforward to calculate ¼̂0(m;nd; nu) and ~¼0(m;nd; nu), by simple substitution.

The superscript 0 indicates that the equilibrium pro¯t is now calculated with foreclosure

imposed. Because si = 0, whenever m = minfnu; ndg we now simply have an m-¯rm

Cournot oligopoly with zero marginal cost and hence pro¯t is 1=(m + 1)2, as was the case

only if nd · nu with no foreclosure. When m = 0, the pro¯t is of course the same as with

no foreclosure.

Hence with nd = nu = n, ¼̂0(n;n;n) = 1=(n+ 1)2 while

~¼0(n¡ 1; n; n) =
1

(n+ 1)2

µ
2n+ 1

4n

¶
= ¼̂0(n; n; n)

µ
2n + 1

4n

¶
< ¼̂0(n; n; n)

and it does not pay to unilaterally deviate when all ¯rms are integrated.

We also know that

~¼0(0; n; n) =
(2n+ 1)n

(n + 1)4
= ¼̂0(n; n; n)

Ã
(2n+ 1)n

(n + 1)2

!

while

¼̂0(1; n;n) =
1

(n+ 1)2

µ
3n¡ 1

2n

¶2
= ¼̂0(n; n; n)

µ
3n¡ 1

2n

¶2

from which we get that ¼̂0(1; n; n) > ~¼0(0; n; n) if and only if n4+ 8n3¡ 2n2¡ 4n+1 > 0, a

condition which holds for all n ¸ 2. Therefore it always pays to be the ¯rst one to unilaterally

integrate. Q.E.D.
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E. Proof of Proposition 6

By substituting (A{4), (A{5) and (A{6) into (9) and (10) and evaluating at nu = 2, we ¯nd

that ~¼(0; nd; 2) = (n2
d
+ nd + 4)=9(nd + 1)2 and ¼̂(2; nd; 2) = (2n2

d
+ 17nd + 39)=(5nd + 17)2.

Subtracting the two, we get

~¼(0; nd; 2)¡ ¼̂(2; nd; 2) =
7n4

d
+ 6n3

d
¡ 116n2

d
+ 114nd + 805

9(nd + 1)2(5nd + 17)2

which is positive for all nd ¸ 2, thus proving part 1 of the Proposition.

The payo® matrices for the integration game, again normalized by setting ¼̂(2;2; 2) =

1000 and rounded to the nearest integer, are, for nd = 3; 4; 5,

nd = 3:
Firms 2

Integrated Not integrated

Firms 1
Integrated 949, 949 1170, 900

Not integrated 900, 1170 1000, 1000

nd = 4:
Firms 2

Integrated Not integrated

Firms 1
Integrated 914, 914 1003, 981

Not integrated 981, 1003 960, 960

nd = 5:
Firms 2

Integrated Not integrated

Firms 1
Integrated 888, 888 903, 1026

Not integrated 1026, 903 944, 944

This proves part 2 and 3. To complete the proof of part 4, we verify that ¼̂(1; nd; 2) =

(n3
d
+ 7n2

d
+ 27nd + 37)=16(nd + 1)(nd + 2)2 and

~¼(0; nd;2)¡ ¼̂(1; nd; 2) =
7n4

d
+ 8n3

d
¡ 114n2

d
¡ 256nd ¡ 77

144(nd + 1)2(nd + 2)2

which is positive for nd = 2; 3;4 but negative for nd ¸ 5, at which point it becomes unprof-

itable to unilaterally deviate when no one is vertically integrated. Q.E.D.

F. Proof of Proposition 7

Again, by substituting (A{4), (A{5) and (A{6) into (9) and (10) and evaluating now at

nd = 2, we ¯nd that ¼̂(2; 2; nu) = 1=9 while ~¼(0; 2; nu) = (n2
u
+ 6)=9(nu + 1)2, so that

~¼(0; nd;2)¡ ¼̂(2; nd;2) =
2nu ¡ 5

9(nu + 1)2
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which is obviously negative for nu = 2 but positive for nu ¸ 3, thus proving part 1 of the

Proposition.

Similarly, ~¼(1; 2; nu) = (16n2
u
¡ 12nu + 31)=6(3nu + 2)2 and ¼̂(1;2; nu) = (12n2

u
+ 16nu +

47)=12(3nu + 2)2, which means that

¼̂(2; 2; nu) ¡ ~¼(1; 2; nu) =
5(12nu ¡ 17)

18(3n¡ u+ 2)2
> 0 for all nu ¸ 2

and

¼̂(1; 2; nu)¡ ~¼(0; 2; nu) =
72n3

u
+ 41n2

u
+ 41nu + 45

36(nu + 1)2(3nu + 2)2
> 0 for all nu > 0:

Therefore it always pays to vertically integrate no matter what the other does. Q.E.D.

G. Foreclosure when nd > nu = 2

The payo® matrices of the integration game with foreclosure imposed and nd > nu = 2 can

be calculated by using (A{9) to (A{13). For nd = 3; 4; 5; 6, they are:

nd = 3:
Firms 2

Integrated Not integrated

Firms 1
Integrated 1000, 1000 1267, 703

Not integrated 703, 1267 1000, 1000

nd = 4:
Firms 2

Integrated Not integrated

Firms 1
Integrated 1000, 1000 1103, 765

Not integrated 765, 1103 960, 960

nd = 5:
Firms 2

Integrated Not integrated

Firms 1
Integrated 1000, 1000 1000, 813

Not integrated 813, 1000 944, 944

nd = 6:
Firms 2

Integrated Not integrated

Firms 1
Integrated 1000, 1000 930, 850

Not integrated 850, 930 939, 939
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