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Asymptotic Null Distribution of the Likelihood

Ratio Test in Markov Switching Models
%%

René Garcia
�

Abstract / Résumé

TheMarkov Switching Model, introduced by Hamilton (1988, 1989), has been used in various

economic and financial applications where changes in regime play potentially an important role.

While estimation methods for these models are by now well established, such is not the case for the

corresponding testing procedures. The Markov switching models raise a special problem known in

the statistics literature as testing hypotheses in models where a nuisance parameter is not identified

under the null hypothesis. In these circumstances, the asymptotic distributions of the usual tests

(likelihood ratio, Lagrange multiplier, Wald tests) are non-standard.

In this paper, we show that, if we treat the transition probabilities as nuisance parameters in a

Markov switching model and set the null hypothesis in terms uniquely of the parameters governed by

theMarkov variable, the distributional theory proposed by Hansen (1991a) is applicable to Markov

switching models under certain assumptions. Based on this framework, we derive analytically, in the

context of two-state Markov switching models, the asymptotic null distribution of the likelihood ratio

test (which is shown to be also valid for the Lagrange multiplier and Wald tests under certain

conditions) and the related covariance functions. Monte Carlo simulations show that the asymptotic

distributions offer a very good approximation to the corresponding empirical distributions.

Les modèles à changements de régime markoviens soulèvent un problème particulier connu dans

la littérature statistique sous la rubrique des tests d'hypothèse dans les modèles où un paramètre de

nuisance n'est pas identifié sous l'hypothèse nulle. Dans ces cas, les distributions asymptotiques des tests

usuels (ratio de vraisemblance, multiplicateur de Lagrange, Wald) ne sont pas standard. Dans le présent

article, nous montrons que, si nous traitons les probabilités de transition comme des paramètres de

nuisance dans un modèle à changements de régime markoviens et fixons l'hypothèse nulle uniquement

en fonction des paramètres régis par la variable de Markov, la théorie distributionnelle proposée par

Hansen (1991) est applicable aux modèles à changements de régime markoviens sous certaines

hypothèses. Dans ce cadre, nous dérivons analytiquement la distribution asymptotique du ratio de

vraisemblance sous l'hypothèse nulle ainsi que les fonctions de covariance correspondantes pour divers

modèles à changements de régime markoviens : un modèle à 2 moyennes avec erreurs non corrélées et

homoscédastiques; un modèle à 2 moyennes avec des erreurs suivant un processus AR(r) ; et finalement

unmodèle à 2moyennes et 2 variances avec des erreurs non corrélées. Dans les trois cas, des expériences

de Monte Carlo montrent que les distributions asymptotiques dérivées offrent une très bonne

approximation de la distribution empirique. La dérivation de la distribution asymptotique de la statistique

du ratio de vraisemblance pour ces trois modèles simples markoviens à 2 états sera utile pour évaluer la

signification statistique des résultats qui sont apparus dans la littérature et plus généralement pour offrir

un ensemble de valeurs critiques aux chercheurs futurs dans ce domaine. Les valeurs critiques de la

distribution asymptotique du test du ratio de vraisemblance dans les modèles à changements de régime

markoviens sont considérablement plus élevées que les valeurs critiques impliquées par la distribution

chi-carré standard.



Cecchetti, Lam, and Mark (1990), Engel and Hamilton (1990), Garcia and Perron (1995), Hamilton1

(1988,1989), Hassett (1990), Turner, Startz, and Nelson (1989).
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The Markov Switching Model, introduced by Hamilton (1988, 1989), has

been used in numerous economic and financial applications where changes in regime

play potentially an important role . In the most general form of this non-linear model,1

the mean, the variance and the autoregressive structure of a time series can be made

dependent upon a state or regime, the realization of which is governed by a discrete-

time, discrete-state Markov stochastic process. While estimation methods for these

models are by now well established (Coslett and Lee (1984), Hamilton (1988, 1989,

1991), Boldin (1989)), such is not the case for the testing procedures. There are

however a few exceptions: Hamilton (1991) proposes some specification tests based

on the Lagrange multiplier principle to test, for example, various forms of

autocorrelation, generalized ARCH effects, and omitted explanatory variables for both

the mean and variance; Boldin (1989) uses the Davies' (1987) upper bound test to

determine the number of regimes; Garcia and Perron (1995) use Gallant's (1977) test

and a J-test for non-nested models (Davidson and Mac-Kinnon (1981)), along with the

Davies' test, to determine also the number of regimes. The use of these non-standard

tests can be explained by the fact that the Markov switching models raise a special

problem known in the statistics literature as testing hypotheses in models where a

nuisance parameter is not identified under the null hypothesis. In these circumstances,

the asymptotic distributions of the usual tests (likelihood ratio, Lagrange multiplier,

Wald tests) are non-standard.

Hansen (1991a) provided a series of examples of economic models where

this problem of unidentified nuisance parameters arises, and studied the corresponding

asymptotic distribution theory. In general, the distributions of the tests are shown to

depend upon the covariance function of chi-square processes. Since this covariance

is model and data dependent, Hansen (1991a) proposes a simulation method to

approximate the asymptotic null distribution and applies it to the threshold model. In

Hansen (1993), the author proposes another method based on empirical process theory

for the case where, in addition to the problem of unidentified nuisance parameters, the

econometrician is faced with identically null scores. The use of this method is

motivated by the existence of this double problem in Markov switching models. In this

paper, we show that, if we treat the transition probabilities as nuisance parameters and

set the null hypothesis in terms uniquely of the parameters (mean, variance or

autoregressive coefficients) governed by the Markov variable, the distributional theory

proposed by Hansen (1991a) is applicable to Markov switching models since the

problem regarding the nullity of the scores can be side-stepped once some

assumptions are made about the conditional state probabilities. Within Hansen's

(1991a) framework, we derive analytically the asymptotic null distribution of the

likelihood ratio test and the related covariance functions for various two-state Markov



This specification encompasses the specifications most frequently used in the literature for two-state2

Markov switching models. Two exceptions are noteworthy: the state-dependent autoregressive specification

used in Garcia and Perron (1995) or the time-varying transition probability model used in Diebold, Lee,

and Weinbach (1993) and Filardo (1992).
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(1)

switching models: a two-mean model with an uncorrelated and homoskedastic noise

component; a two-mean model with an AR(r) homoskedastic noise component; and

finally a two-mean, two-variance model with an uncorrelated noise component. In all

three cases, Monte-Carlo experiments show that the derived asymptotic distributions

offer a very good approximation to the empirical distribution. The derivation of the

asymptotic distribution of the likelihood ratio statistic for these three simple two-state

Markov models will prove useful to assess the statistical significance of the results that

appeared in the literature (i.e. Cechetti, Lam, and Mark (1990), Hamilton (1989),

Turner, Startz and Nelson (1989)) and to generally offer a set of critical values to

future researchers. This method offers a useful alternative to Hansen's (1993)

methodology, the application of which is limited by computational requirements.

In Section 1, we present a general two-state Markov switching model,

explain the problem of non-identification of some nuisance parameters under the null

hypothesis, and set up the testing problem as the supremum of likelihood ratio

statistics. In Section 2, we briefly present Hansen's (1991a) asymptotic distribution

theory for the trinity of tests (likelihood ratio, Lagrange multiplier, and Wald) in

models where nuisance parameters are not identified under the null. In Section 3, the

covariance function for the general two-state Markov switching model is derived.

Section 4 provides the asymptotic null distributions of the LR statistic for three

specific Markov switching models used by various authors to capture changes in

regime in economic and financial time series. These models differ by the specification

of the noise function in the general two-state Markov switching model. We also

compute the power of the LR test for these three models. Section 5 concludes.

1. Testing in the Context of Markov Switching Models

The two-state Markov switching model is defined as follows :2

where is a stationary process and is i.i.d. . Assume one wants to test

the null hypothesis of a linear model against the alternative hypothesis of a Markov



This point is clear when looking at the element of the score vector corresponding to derived in Lemma3

1.

4

switching model. The null hypothesis can be expressed as either or

or . To see the problem of unidentified nuisance parameters under the null, note

that if and are equal to zero, the transition probability parameters and are

unidentified since any value between 0 and 1 will leave the likelihood function

unchanged. As for the problem of identically zero scores, note that under , the

scores with respect to , , and will be identically zero under the null and the

asymptotic information matrix will be singular. Under these conditions, the3

likelihood ratio, Lagrange multiplier, and Wald tests do not have a standard asymptotic

distribution. This is the point of departure of Hansen's (1993) analysis regarding the

likelihood ratio test under non-standard conditions, since the two problems of

unidentified nuisance parameters under the null and identically zero scores are present.

He uses empirical process theory to derive a bound for the asymptotic distribution of

a standardized likelihood ratio statistic. Although the method is appealing since it

addresses both above-mentioned violations of the conventional regularity conditions,

it seems to run rapidly into computational limitations. Hansen's testing procedure

requires to set a grid for each parameter depending on the Markov variable , plus

and . In a model where the mean and the variance of the series change with the state,

this means a grid over four parameters and to stay computationally tractable, it is

necessary to limit the number of grid points. Also, Hansen's method provides a bound

for the likelihood ratio statistic and not a critical value.

The problem comes from the fact that at or , the scores with respect

to and are zero. Although these two points represent part of the null hypothesis,

in practice if the econometrician finds these values as estimates for while estimating

the Markov switching alternative after having tried many starting values for the

parameters, he will conclude that there is not much evidence for a non-linearity of this

type in the series and accept the null of a linear model or try another non-linear model.

The more interesting issue arises when the estimated value for is different from 0

or 1, since one has to establish whether or not the parameters governed by the Markov

process are significantly different from zero. A way to approach the problem is to treat

the transition probability parameters and truly as nuisance parameters, since if we

fix them at predetermined values other than 0 and 1, there are no scores with respect

to these probability parameters. Moreover, it is shown that the information matrix for

the remaining parameters becomes non-singular at once some assumptions

are made about the conditional state probabilities. We can therefore derive the

likelihood ratio statistic for each such set of values for the two transition probability

parameters over a certain parameter space, say where and lie. The likelihood



Andrews and Ploberger (1994) mention specifically that their test is not applicable to the Markov4

switching model because the information matrix is not uniformly positive definite over the space. This

is due to the identically null score problem mentioned in the introduction. We will see in Section 3 what

assumptions are necessary to apply the Sup LR test as well as the average Exp LR test to Markov

Switching models.
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(2)

(3)

(4)

ratio of the original problem is therefore the supremum over of the likelihood ratios

obtained for each particular set of values of the and parameters. Formally, define

and as follows:

where , the average log-likelihood function of a sample of n observations, is given

by:

ith and . The first statistic refers to the difference

between the estimated unconstrained ( ) and constrained ( ) models. For the

second , the maximizing value of 2 under the alternative ( ) is obtained for

a given value of (. The statistics and are related as follows (see Hansen

(1991), theorem (3)):

where ' is a metric space from which the values 0 and 1 have to be excluded to keep

the information matrix positive definite as mentioned in Section 1.

In the context of hypothesis tests when a nuisance parameter is present only

under the alternative, Andrews and Ploberger (1993) show that the sup LR test is a

best test, in a certain sense, against alternatives that are sufficiently distant from the

null hypothesis. In Andrews and Ploberger (1994), they consider a class of tests

(average exponential LM, Wald and LR tests) that exhibit optimality properties in

terms of weighted average power for particular weight functions (multivariate normal

densities). The LR test is not admissible in this class of tests. Although the Markov

switching model is not included in the examples covered in the paper , we compare4

in terms of size the sup LR test to the exponential LR test for various two-state

Markov switching models.



By taking the absence of serial correlation and heteroskedasticity as given, we assume that the specification5

tests related to theMarkov switching specification have been run. The goal is to focus on the mispecification

test of the linear null against the Markov switching alternative.

A process is a chi-square process of order k in if it can be represented as ,6

where is a mean zero k-vector Gaussian process with covariance function .
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(5)

(6)

(7)

2. The Asymptotic Distribution of the Likelihood Ratio Test

In this section, we state a restricted version of a theorem appearing in Hansen

(1991a).

Theorem 1: Under the set of assumptions stated in Appendix A and in the

absence of serial correlation and heteroskedasticity in the noise

function:5

where is a chi-square process with covariance matrix , defined as follows:6

where is a vector of dimension k (the dimension of the parameter space under the

alternative) with ones in the positions of the parameters constrained to be zero under

the null and:

Under the assumptions of the theorem, Hansen (1991a) shows that, as in the classical

theory, the LR, LM and Wald statistics all have the same asymptotic distribution.

One important condition to derive the asymptotic distribution of is

that V(() is positive definite uniformly over '. If V(() is singular for some values of

(, one must redefine ' to exclude these values. As mentioned in the previous section,

this is the case in our model. This problem arises also in structural change models

when the timing of the change is an unknown fraction of the sample size. In this case,



In Hansen (1991a)(footnote 1, page 10), stochastic equicontinuity is defined as follows:7

is stochastically equicontinuous on if for all and there exists some

such that , where denotes the distance metric defined on .

7

(8)

(9)

the fraction has to be bounded away from 0 and 1. The other conditions deal mainly

with compactness of the parameter spaces and (where ( and 2 respectively lie),

continuity of and , and stochastic equicontinuity in of7

and over the corresponding spaces. Verifying whether

all the regularity conditions hold in the present context appears difficult. We will

therefore assume that these conditions hold and, short of a proof, simulate the derived

asymptotic distributions of the likelihood ratio statistic for the various models

considered and compare them to the empirical distributions obtained by Monte-Carlo

methods.

3. Derivation of the Covariance Function for the General Two-

State Markov Switching Model

The two-state Markov switching model (1) can be rewritten as follows:

The likelihood of observation t, conditional upon , the information at time

t, is therefore given by:

The derivatives with respect to each parameter of the logarithm of the

probability of observation t, conditional upon , the information at time t, and

evaluated at are therefore given by:
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(10)

Using the following equalities:

we derive, in the following lemma, the corresponding scores.

Lemma 1: The elements of the score vector , evaluated at the true

value of the parameters of interest and at a particular given

value of the nuisance parameters, are given by:



Another way to side-step the problem of identically null scores will be to set the null arbitrarily close to8

zero, since in this case the could be filtered out.

9

(12)

where .

A proof is provided in Appendix B. In the element of the score vector with

respect to , note that is equal to

,theunconditionalprobabilityofbeinginstate1,foreachtsinceunder

these probabilities cannot be filtered out. Therefore, the score becomes identically

null. The way we side-step this problem of identically null scores is to assume that if

the unconditional probability is , then of the points will be affected to one

regime, and the remainder to the other regime . In other words, a proportion of8

will have value 1, while for the complement ( ) of the points, will be zero.

Intuitively, this reassignment of probabilities reflects the way the filtering algorithm

will most often assign the probabilities in a finite sample drawn under the null

assumption. Asymptotically, as n tends to infinity, the score will still be zero at the null

. To see whether the assumption is valid or not, we will compare the asymptotic

distribution of the LR ratio test derived under this assumption to the empirical

distribution for various models. Since the score is no longer identically zero, we can

state the following lemma.

Lemma 2: The covariance matrix of the score vectors, as defined in

Section 2, is equal to:

where is given by:
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with denoting the second row, second column element of the matrix T raised

to the power i, where is the transition probability matrix of the Markov variable :

with the star denoting the transition probabilities corresponding to . The

element in the covariance matrix is obtained under the assumption

that the points of the sample which are classified in state 1 under will also be

classified in state 1 under , with greater than . Finally, denotes the

autocovariance matrix of , where is an AR(r). A proof of Lemma 2 is provided

in Appendix C.

In the next section, we will derive, based on this general covariance function,

the asymptotic null distribution of for three specific models: a two-mean model

with an uncorrelated and homoskedastic noise component, used by Cecchetti, Lam,

and Mark (1990) to model the annual growth rate of consumption; a two-mean model

with an AR(r) homoskedastic noise component, used by Hamilton (1989) to model the

quarterly growth rate of output; and finally a two-mean, two-variance model with an

uncorrelated noise component, used by Turner, Startz and Nelson (1989) to model a

series of stock returns. The derived critical values will allow us to test formally the

linear null againt the Markov switching alternative in all three cases. We also compute

the power of the Sup LR test for these three models.

4. Asymptotic null distributions of the Sup LR statistic

Based on theorem 1 and Lemmas 1 and 2, we derive for each of the three

above-mentioned Markov switching models , the covariance function of the

chi-square process .



In earlier versions of the paper, it was shown that the asymptotic null distribution of the LR test in this9

particular model was identical to the ditribution of the LR test in a one-dimensional threshold model

(derived by Chan (1990)) and to a structural change model with an unknown change point (Andrews

(1993)).
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(13)

(14)

4.1 Two-mean model with an uncorrelated and homoskedastic noise component

The two-state MSM with an uncorrelated and homoskedastic noise

component is given by:

The limiting distribution of is , where is a chi-9

square process with covariance:

Proof: By theorem 1, the covariance of is given by:

In order to simulate the distribution of , we follow the general method

for simulating chi-square processes described in Appendix D. In this case, the

and vectors reduce to scalars and we generate at each draw a Tx1 vector of as

follows:
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(15)

(16)

The chi-square process is therefore equal to:

To obtain the supremum of over , we must fix the bounds of the

parameter space or, in our case, of the function of the parameters and . Since

the are singular for B equal to 0 or 1, we must fix the bounds away from 0 and

1 for the theory to be valid.

However, it remains to be determined how far away from 0 and 1 we must set and

to obtain a good approximation to the finite sample distribution. In the context of

structural change models with an unknown change point, Andrews (1993) chooses

0.15 and 0.85. To see which bounds will produce the best asymptotic approximation

to the finite sample distribution, we simulated the empirical distribution by generating

a 1,000 series of 100 observations under the null and estimated the likelihood

under both the null and the Markov switching alternative in (13).

Since the true model is a model with no change in regime, one might expect

when estimating the Markov switching model that some sets of optimizing values for

the parameters correspond to local maxima of the likelihood function. This problem

has been reported in Hamilton (1989) and Garcia and Perron (1995). This means that

a 1,000 replications will typically produce only a fraction of positive log likelihood

ratios, and among these a lot of values close to zero. A way to minimize this problem

is to optimize the likelihood function under the alternative by using many sets of

starting values for each generated series and take the maximum of the likelihood

function over the values so obtained. By proceeding in this fashion, we hope to

eliminate or at least reduce the number of local maxima. We applied this method using

twelve sets of starting values. The success rate in obtaining a positive likelihood ratio

was 100%. The results are shown in the first column of Table 1. The 99% and 95%

critical values are 14.02 et 10.89 respectively. The next two columns of Table 1 show

the critical values of the asymptotic distribution obtained with 10,000 replications of

for and , with increments of 0.001. It appears that the

asymptotic values up to the 65% percentile of the distribution for the [0.01,0.99]
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(17)

(18)

bounds are very close to the corresponding empirical values. The left tail of the

distribution is not approximated as well and this could be due to the presence of local

maxima. Note also that these critical values for the likelihood ratio statistic are

considerably higher than the values of a , the distribution of the LR test in the

classical theory.

To compare the exponential LR test to the Sup LR test, we report in the

upper part of Table 2 the actual size of both tests for nominal sizes of 1% and 5%

under the range. A nominal 5% test with the exponential LR test will

have an actual size of around 30%, compared with 6.5% for the Sup LR.

Finally, in the lower part of Table 2, we report the power of the Sup LR test

for the Markov switching model of consumption growth estimated by Cecchetti, Lam,

and Mark (1990). We generated a 1,000 series based on the following estimates

( , ), and estimated for each series

both the linear and the Markov switching models. A 5% Sup LR test will have in this

case a power of about 50%.

4.2 Two-mean model with an AR(r) homoskedastic noise component

With an autoregressive structure of order r and no heteroskedasticity for the

noise term, we obtain the following specification for the Markov switching model:

The limiting distribution of is , where is a chi-square

process with covariance:

Proof: The expression follows from:

and:



This value corresponds to the value of the autoregressive coefficient in an AR(1) model for log GNP,10

estimated from 1952 II to 1984:IV, the period chosen by Hamilton (1989).
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where: and is deduced from the expression given

in (12) for an homoskedastic process.

We note that the parameter space is now two-dimensional since both p and

B are present in the covariance function, and also that the covariance function depends

on the autoregressive parameters. To assess the performance of the sup LR test in the

autoregressive case, we first study the AR(1) case in detail. We determine the bounds

of the parameter space over p and B that give the asymptotic distribution which

provides the best approximation to the empirical distribution. We also simulate the

asymptotic distribution for a range of values of the autoregressive parameter to

establish whether the distribution changes or remains stable.

4.2.1 The AR(1) case

To determine the bounds that give the best approximation to the empirical

distribution and to see if the empirical distribution varies as a function of , we

simulated the empirical distribution of the likelihood ratio for two AR(1) models with

N , the autoregressive parameter equal to 0.337 and -0.5. The true model is the
1

10

AR(1) model and the alternative is the two-state Markov model in (17) with r=1. We

generated the distribution using 1,000 replications of the true model and estimating

the alternative Markov switching model, starting with six different sets of values for

the six parameters for each series to avoid as much as possible the problem of local

maxima explained in section 4.1. The critical values obtained for the empirical

distribution of the likelihood ratio are shown in Table 3. They appear to be smaller

than the values obtained for the uncorrelated and homoskedastic case. Also it has to
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(19)

(20)

(21)

be noted that the empirical critical values do not seem to depend on the value of the

autoregressive parameter.

To generate the asymptotic distribution of , we used the interval

[0.15,0.85] for both parameters p and B, with increments of 0.002 for p and 0.001 for

B.

To simulate the distribution of , we generate at each draw a random Tx1

vector of , as follows:

where is defined as follows:

The chi-square process is therefore equal to:

The distributions are based on 10,000 replications. The asymptotic critical

values are fairly close to the empirical ones, except again for the left tail. Moreover,

the distribution do not seem to depend on the value of the autoregressive parameter.

This is confirmed in Table 4, where we present the asymptotic critical values

corresponding to the various percentage levels for eight different values of : 0.3,

0.5, 0.8, 0.95 and -0.3, -0.5, -0.8, and -0.95. It has to be noted however that the

distribution is not invariant to the value of the autoregressive parameter.

To compare the exponential LR test to the Sup LR test, we report in Table

5 the actual sizes of both tests for nominal sizes of 1% and 5%, for N=0.337 and N=-

0.5. For both values of N , a nominal 5% test with the exponential LR test will have
1

an actual size of around 25%, compared with a value close to 5% for the Sup LR test.

To assess the power of the Sup LR test for a model with an autoregressive

structure, we will use the AR(4) model estimated by Hamilton (1989).

4.2.2 The AR(4) case: the Hamilton (1989) GNP Model

To capture the asymmetry in the growth rate of GNP between booms and

recessions, Hamilton (1989) chose a Markov switching model identical to the model

in (17) with a fourth-order autoregressive noise function. The maximum likelihood

estimation results are presented in Table 6 along with the maximum likelihood
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(22)

(23)

estimates of the AR(4) model. We can first note that the likelihood ratio statistic (2L)

is equal to 4.812. If judged with respect to a chi-square distribution with one degree

of freedom, the null of an AR(4) in first differences will be rejected at about the 3%

level.

To assess the estimation results of Hamilton, we need to generate the

distribution of defined at the beginning of the section for r=4. For the

autoregressive parameters, we use the estimated values shown in Table 6 for the

Markov trend model. The results are shown in Table 7 for bounds of 0.15 and 0.85 for

the and parameters. As shown in 4.2.1, these bounds give the best approximation

for the empirical distribution of the AR(1) case. Judged by this distribution, we cannot

reject at usual levels the null of an AR(4) against the Markov trend model for the first

differences of US log GNP. We reach therefore the same conclusion as Hansen (1993)

with his simulation-based bound method.

Finally, in the right hand side part of Table 7, we report the empirical

distribution of the LR statistic when the data generating process is the Markov

switching model of GNP estimated by Hamilton (1989) with the parameter values

shown in Table 6. The LR statistic distribution is obtained by estimating both the

linear AR(4) model and the Markov trend model with an autoregressive structure of

order 4 for a 1,000 series produced by the data generating process. A 5% Sup LR test

will have a power close to 80%.

4.3 Two-mean model with an uncorrelated and heteroskedastic noise component

The two-state MSM with an uncorrelated and heteroskedastic noise

component is given by:

In this case, the covariance matrix of the score vectors given in (12)

reduces to:



Aword of caution about the generation of the empirical distribution is in order. In about 5% of the cases,11

the optimizing program reaches singularity points, where either or are close to zero, giving high

values for the likelihood ratio. These values have been excluded from the empirical distribution.
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(24)

(25)

Thelimitingdistributionof istherefore ,where

and are chi-square processes with respective covariances:

The proof follows exactly the steps described before for the homoskedastic

case. Finally, we arrive at the following covariance matrix for .

Therefore, can be represented as the sum of two chi-square processes with the

covariances shown above. To simulate the distribution of , we therefore follow

the method described in section 4.1 to generate two independent Gaussian vectors

and . Table 8 shows the asymptotic critical values generated with the set

of bounds [0.01-0.99] for , which gives the best approximation to the empirical

distribution, along with the empirical critical values. The empirical distribution was

obtained by generating 1,000 series under the null hypothesis ( ) and

estimating the likelihood ratio between the linear homoskedastic model and the

heteroskedastic Markov switching model, using again six sets of starting values for the

parameters.11

The comparison of the exponential LR test and the Sup LR test is reported

in Table 9, which shows the actual sizes of both tests for nominal sizes of 1% and 5%.

Like in the homoskedastic case, the size of the exponential LR will be distorted, but

the distorsion will be stronger: a nominal 5% test will have an actual size of around

60%, compared with a value close to 5% for the Sup LR.

Finally, in the lower part of Table 9, we report the power of the Sup LR test

for the Markov switching model of stock returns estimated by Turner, Startz, and

Nelson (1989). We generated a 1,000 series based on the following parameter
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estimates ( , ), and estimated

for each series both the linear and the Markov switching model. A 5% Sup LR test

will have in this case a power of about 60%.

5. Conclusion

This paper has shown that the critical values of the asymptotic null

distribution of the likelihood ratio test in Markov switching models (also valid, under

certain conditions, for the Lagrange multiplier and Wald tests) are considerably higher

than the critical values implied by the standard distribution. The paper also

shows, for a series of two-state Markov switching models that the asymptotic

distribution is very close to the small sample distribution.

The critical values reported for the two-mean and two-mean, two-variance

models with an uncorrelated noise function can be used directly to assess the validity

of Markov switching models with the same specification for various economic and

financial time series. For models with a correlated noise function, we propose a

general simulation method that researchers can use to generate the asymptotic

distribution of the Sup LR test given their estimates of the autoregressive parameters.

We have shown however that this distribution is insensitive to the values of the

autoregressive parameters.

For the AR(4) GNP model estimated by Hamilton (1989), we generated the

asymptotic distribution of the Sup LR test and shown that, based on this test, the null

of an AR(4) cannot be rejected. In other words, there is no evidence in the period

chosen by Hamilton for a Markov switching model in the GNP growth series. We also

assessed the power of the test to be around 80% for this particular model. For the other

models studied with an uncorrelated noise function, the power of the Sup LR test was

in the 50-60% range.
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TABLE 1

Empirical and Asymptotic Critical Values

of the Likelihood Ratio in a Two-state Markov Switching Model with

Uncorrelated and Homoskedastic Errors

% of Dist. Empirical

Distribution

Critical Value

Asympt. Dist.

Critical Value

[0.01-0.99]

Asympt. Dist.

Critical Value

[0.15-0.85]

99% 14.02 13.64 12.45

95% 10.89 10.18 8.60

90% 8.92 8.68 7.08

85% 7.47 7.72 6.13

80% 6.71 7.04 5.47

75% 6.08 6.49 4.93

70% 5.53 6.05 4.50

65% 5.04 5.67 4.15

60% 4.73 5.33 3.83

55% 4.35 5.00 3.51

50% 4.03 4.72 3.25

45% 3.70 4.45 3.00

40% 3.45 4.18 2.77

35% 3.12 3.91 2.55

30% 2.81 3.66 2.35

25% 2.52 3.41 2.14

20% 2.23 3.14 1.93

15% 1.78 2.88 1.72

10% 1.39 2.55 1.48

5% 0.99 2.15 1.18

1% 0.45 1.56 0.81
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TABLE 2

Size and Power of the Sup LR test

in a Two-state Markov Switching Model with

Uncorrelated and Homoskedastic Errors

Nominal Size 1% 5%

Sup LR 1.4% 6.5%

Exp LR 10.2% 28.6%

Power - Sup LR 38.2% 49.5%

Note: The power of Sup LR test has been

computed with respect to the model estimated by

Cecchetti, Lam, and Mark (1990).
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TABLE 3

Comparison of Empirical and Asymptotic Critical Values

of the Likelihood Ratio in a Two-state Markov Switching Model

with First-Order Autoregressive and Homoskedastic Noise Function

for different values of the autoregressive parameter

% Dist. Asymptotic

Distribution

Critical Values

N =0.3371

Empirical

Distribution

Critical Values

N =0.3371

Asymptotic

Distribution

Critical Values

N =-0.51

Empirical

Distribution

Critical Values

N =-0.51

99% 12.00 11.82 11.88 13.08

95% 8.68 8.72 8.62 8.82

90% 7.05 7.21 7.06 7.27

85% 6.15 6.12 6.11 6.39

80% 5.48 5.52 5.44 5.74

75% 4.92 4.98 4.91 5.27

70% 4.49 4.33 4.43 4.73

65% 4.13 3.92 4.10 4.34

60% 3.81 3.54 3.80 3.93

55% 3.50 3.11 3.51 3.61

50% 3.26 2.83 3.25 3.28

45% 3.00 2.49 3.00 3.00

40% 2.78 2.29 2.76 2.73

35% 2.55 2.01 2.54 2.43

30% 2.33 1.74 2.33 2.09

25% 2.12 1.45 2.11 1.82

20% 1.89 1.20 1.92 1.53

15% 1.70 0.96 1.70 1.19

10% 1.45 0.66 1.45 0.86

5% 1.18 0.31 1.17 0.57

1% 0.79 0.03 0.81 0.15
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TABLE 4

Asymptotic Critical Values

of the Likelihood Ratio in a Two-state Markov Switching Model

with First-Order Autoregressive and Homoskedastic Noise Function

for various values of the autoregressive parameter

% Dist. Critical Values

N =0.31

Critical Values

N =0.51

Critical Values

N =0.81

Critical Values

N =0.951

99% 11.92 12.07 11.95 12.08

95% 8.74 8.57 8.48 8.48

90% 7.20 7.06 7.00 7.06

85% 6.20 6.10 6.12 6.17

80% 5.49 5.44 5.44 5.51

75% 4.97 4.94 4.92 4.97

70% 4.55 4.52 4.49 4.52

65% 4.17 4.16 4.10 4.12

60% 3.83 3.83 3.80 3.79

55% 3.54 3.54 3.51 3.49

50% 3.28 3.27 3.26 3.22

45% 3.04 3.01 3.02 2.99

40% 2.80 2.77 2.78 2.75

35% 2.56 2.55 2.56 2.53

30% 2.35 2.32 2.34 2.33

25% 2.15 2.11 2.12 2.12

20% 1.93 1.91 1.92 1.90

15% 1.70 1.70 1.70 1.68

10% 1.46 1.46 1.46 1.45

5% 1.21 1.17 1.17 1.18

1% 0.79 0.78 0.81 0.83
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TABLE 4 (Cont'd)

Asymptotic Critical Values

of the Likelihood Ratio in a Two-state Markov Switching Model

with First-Order Autoregressive and Homoskedastic Noise Function

for various values of the autoregressive parameter

% Dist. Critical Values

N =-0.31

Critical Values

N =-0.51

Critical Values

N =-0.81

Critical Values

N =-0.951

99% 12.26 11.88 12.45 11.79

95% 8.66 8.62 8.68 8.50

90% 7.08 7.06 7.08 7.00

85% 6.11 6.11 6.14 6.15

80% 5.43 5.44 5.51 5.50

75% 4.94 4.91 5.00 4.96

70% 4.52 4.43 4.55 4.54

65% 4.15 4.10 4.18 4.17

60% 3.82 3.80 3.85 3.84

55% 3.55 3.51 3.55 3.55

50% 3.28 3.25 3.28 3.28

45% 3.03 3.00 3.04 3.03

40% 2.80 2.76 2.81 2.79

35% 2.56 2.54 2.59 2.57

30% 2.35 2.33 2.37 2.35

25% 2.14 2.11 2.15 2.13

20% 1.93 1.92 1.94 1.91

15% 1.72 1.70 1.72 1.70

10% 1.47 1.45 1.49 1.47

5% 1.19 1.17 1.19 1.18

1% 0.82 0.81 0.79 0.81
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TABLE 5

Size of the Sup LR and Exp LR tests

in a Two-state Markov Switching Model with

First-Order Autoregressive and Homoskedastic Noise

Function

Nominal Size 1% 5%

Autoregressive Coefficient = 0.337

Sup LR 0.97% 5.1%

Exp LR 6.1% 22.9%

Autoregressive Coefficient = -0.5

Sup LR 1.6% 5.4%

Exp LR 7.1% 26%
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TABLE 6

Maximum Likelihood Estimates - US Real GNP 1952:2-1984:4

Parameters AR(4) Model Markov Trend Model1

"
0

0.720 (0.112) -0.359 (0.265)

[0.465]

"
1

-- 1.522 (0.264)

[0.464]

p -- 0.904 (0.037)

[0.033]

q -- 0.755 (0.097)

[0.101]

N
1

0.310 (0.088) 0.014 (0.120)

[0.164]

N
2

0.127 (0.091) -0.058 (0.137)

[0.219]

N
3

-0.121 (0.091) -0.247 (0.107)

[0.148]

N
4

-0.089 (0.087) -0.213 (0.110)

[0.136]

F 0.983 (0.061) 0.769 (0.067)

[0.094]

L -63.29 -60.88

Note 1: The standard errors between parentheses correspond to the values of the numerically

computed Hessian.

The standard errors between brackets are taken from Hansen (1990a) and correspond to

heteroskedastically consistent values.
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TABLE 7

Distributions of the Likelihood

Ratio Statistic - Linear AR(4) against Markov Trend Model AR(4)1

Asymptotic Distribution

under the Linear Null

Empirical Distribution

under the Markov Trend Null

99% 12.24 33.35

95% 8.59 26.70

90% 7.10 23.99

85% 6.16 21.38

80% 5.52 19.63

75% 4.99 18.30

70% 4.52 17.26

65% 4.17 16.42

60% 3.84 15.47

55% 3.55 14.38

50% 3.27 13.47

45% 3.03 12.78

40% 2.79 11.95

35% 2.56 11.08

30% 2.33 10.21

25% 2.12 9.18

20% 1.93 8.24

15% 1.72 7.52

10% 1.47 6.19

5% 1.18 4.44

1% 0.80 2.10

Note 1: These critical values were computed using for the

autoregressive parameters the estimated values with the

Markov trend model for US GNP (see Table 1).



29

TABLE 8

Comparison of Empirical and Asymptotic Critical Values

of the Likelihood Ratio in a Two-state Markov Switching Model

with Uncorrelated and Heteroskedastic Noise Function

% Dist. Empirical

Distribution

Critical Values

Asymptotic

Distribution

Critical Values

[0.01-0.99]

99% 17.38 17.52

95% 14.11 13.68

90% 12.23 11.88

85% 10.93 10.78

80% 10.02 9.99

75% 9.42 9.41

70% 8.84 8.86

65% 8.22 8.39

60% 7.80 7.97

55% 7.37 7.59

50% 6.84 7.22

45% 6.34 6.87

40% 5.98 6.55

35% 5.58 6.23

30% 5.22 5.90

25% 4.82 5.58

20% 4.37 5.25

15% 3.84 4.87

10% 3.25 4.43

5% 2.68 3.87

1% 1.74 3.05
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TABLE 9

Size and Power of the Sup LR test

in a Two-state Markov Switching Model with

Uncorrelated and Heteraskedastic Errors

Nominal Size 1% 5%

Sup LR 0.98% 6.2%

Exp LR 25.7% 41.7%

Power - Sup LR 46% 60.9%

Note: The power of Sup LR test has been computed with respect

to the model estimated by Turner, Startz, and Nelson (1989).
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APPENDIX A

We reproduce below the sets of assumptions 1, 2, and 3 in Hansen (1991a).

Assumption 1

i)  and  are compact.

ii)  is continuous in (2,() uniformly over .

iii)  for all .

iv)  is stochastically equicontinuous in (2,() over .

v) For all  is uniquely maximized over  at .

Assumption 2

For  does not depend upon (.

Assumption 3

i)  and  are continuous in (2,()

uniformly over , where  is some neighborhood of .

ii)  for all .

iii)  and  are stochastically equicontinuous in (2,() over

.
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iv)  and  are positive definite uniformly over .

v)  on , where  is a mean zero Gaussian process with

the 

covariance function:

where  denotes weak convergence of probability measures with respect to the uniform

metric.
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APPENDIX B

Derivation of the scores

Start with the following equality:

Therefore:

where:  

Then, summing over   for  and dividing by , we obtain:

since  depends only on . The conditional probabilities

 are the so-called smoothed probabilities (see Hamilton (1989)).
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APPENDIX C

Proof of Lemma 2

We will develop below the computation of each element of the covariance matrix of the
scores , starting with the  element:

where:

The conditioning of  on  reflects the fact that the filters based on (  and (  are1 2

not independent since they are inferred from the same series . 

First note that the sums of the products of the probabilities is equal to 1. Also, by the
serial independence assumption about the ,, we are left with:

We now derive the formula for the expectation of the cross-product of the scores with
respect to  and :

Since the conditional probabilities  sum to one, we are left with:

This can be rewritten as:

where we have used the independence assumption between , and s((). Next, we apply the law

of iterated expectations  and note that
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. Therefore, by the serial independence assumption about ,, the

final expression is given by:

Similarly for the  element:

Proceeding in the same way, we obtain the following expression for the  element:

Now, we state the following results for Markov variables:

where  corresponds to the transition probability matrix for the Markov variable having the highest
probability limit ( );  denotes the second row, second column element of the matrix

T  raised to the power i. Using the independence assumption of the ,, we finally obtain:*

with  given by:
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Since the expectations of  and  are 0, the expectations of the cross-products of the

scores with respect to  and  on one hand, and  and  on the other, are both zero. 

The limits as n tends to infinity of the expectations of the scores with respect to  and

, and  and  are both zero, as we will show below for N : 1

Since all the conditional probabilities sum to one and the , are serially independent, we
finally obtain:

The limit as n tends to infinity of the average of the y is E(y), i.e.  under the null

hypothesis. Therefore, the whole expression tends to zero.  The development is similar for the
 element.

For the  element, we proceed similarly and arrive at:

As n tends to infinity, the sum goes to the corresponding element of the asymptotic
autocovariance matrix of the .

All the expectations of the cross-products of the scores with respect to  and  on

one hand, and to  and  (i=1,...,r) on the other, are zero since the expectation of  and 

are 0. 
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We are therefore left with the cross-products of the scores with respect to the variance
parameters  and . We derive first the expectation of the cross-product of the scores with

respect to :

Note that the probabilities sum to 1 and that, by the serial independence assumption on
the ,, the expectation of the cross-products of the square-bracketed terms are zero when t is
different from s. We are therefore left with:

where the last equality follows from: .

The  element is given by:

Proceeding as before, we obtain: 

where we have used the i.i.d. assumption about ,, the independence between  and the

law of iterated expectations for . Similarly,  and

.
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APPENDIX D

Method for Simulating Chi-Square Processes

According to the definition in footnote 5, a chi-square process is the product of Gaussian
vector processes which have a certain covariance matrix. We therefore propose below a general
method to generate Gaussian vector processes with a given covariance matrix. Assume that we
select a set of T values in the parameter space  to generate the distribution of , say

.

Then the first step consists in drawing T vectors of i.i.d.  variates of dimension k, 
, i.e.:

As a second step, construct T Gaussian vectors of dimension k, , as follows:

The  vectors are Gaussian vectors and have by construction variance and covariance matrices
which are functions of the  matrices.

Given the covariance function , one can find the corresponding  by the

following steps:

1. Start with:

The last equality allows to compute the k  elements of the  matrix, given the k2 2

elements of the  variance matrix.

2. a. Determine the k  elements of the  matrix by:2

given the k  elements of  computed in step 1. The last equality results from the orthogonality2

of  and  and by , where  is the identity matrix of dimension k.
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   b. Determine the k  elements of the  matrix by:2

Given the elements of  computed at step 2a., one can find the elements of  given the 

matrix.

3. For any , determine the elements of the matrix  by:

The  so constructed are Gaussian with covariance matrices , .

This algorithm is equivalent to calculating the Cholesky decomposition of the following matrix:

to obtain:  and generate the vector , where , is a (Tk x 1) vector of i.i.d. N(0,1) variates.
When k is large, this numerical approach might be the only way to generate the covariance matrix,
but for the relatively simple models studied in this paper, we will derive analytically the elements
of the P matrix.


