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1 Introduction

The problem of optimal allocation of economic resources is far from being a recent issue. It

is a problem which already existed in the world before the first century1. Nonetheless, there

has been a strong advances in the literature of the optimal allocation of financial resources

since the 20th century with the proposal of several strategies for portfolio selection, especially

with the seminal work of Markowitz (1952) which offers an essential basis to portfolio selection

in a single period. However, his quadratic form utility function hypothesis has been strongly

criticized and many alternative utility functions such as power utility and exponential utility

have emerged in the literature of portfolio optimization. Moreover, Epstein and Zin (1989, 1991)

develop a more flexible version of the basic power utility model. This new version of utility

retains the desirable scale-independence of the power utility2 but breaks the link between the

elasticity of intertemporal substitution and the coefficient of relative risk aversion. Regarding

the large advantages of this class of preferences and their ability to explain financial variables,

we use recursive utility to characterize investors’ preferences in our economy. Hence, our work

is related to the previous literature of portfolio optimization with recursive preferences (see

Campbell and Viceira (2002), Campbell, Chacko, Rodriguez, and Viceira (2004), Campani,

Garcia, and Lioui (2019)). More importantly, all those studies are carried out in a frictionless

framework. Nonetheless, financial frictions in the form of liquidity costs, taxes, and transaction

costs may affect investors’ behavior on the financial market. For instance, an investor will have

an incentive to invest in a more liquid asset compared to a less liquid asset. Indeed, according

to Acharya and Pedersen (2005), the wealth problem which arises in the financial market due to

the low market return at a given time can be amplified if selling investors hold illiquid assets at

this time. In fact, the asset illiquidity3 could be seen as a potential loss because one cannot sell

it at the price previously thought at a short notice. Moreover, investors will tend to have a high

preference for assets which require less costs to be invested in. Therefore, one needs to examine

the role played by those frictions in a portfolio selection problem with recursive preferences.

We address this issue by treating trading costs as the only friction in the financial market since

1For instance, in circa 400 A.D. Rabbi Issac Bar Aha recommended that one should always divide his wealth
equally into three parts: land, merchandise and cash at hand.

2such as the relative risk aversion coefficient and the elasticity of intertemporal substitution are constant
3See Amihud (2002) for a more general definition of the asset illiquidity.
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assets illiquidity costs could also be seen as a certain transaction cost (Acharya and Pedersen

(2005)). Our paper is then related to the vast literature about transaction costs and portfolio

selection problems (see Dumas and Luciano (1991), Balduzzi and Lynch (1999) , Lynch and

Balduzzi (2000), Liu and Loewenstein (2002), Liu (2004), Lesmond, Schill, and Zhou (2004),

Buss, Uppal, and Vilkov (2015), Gârleanu and Pedersen (2013), Novy-Marx and Velikov (2016),

He and Modest (1995), Detemple and Rindisbacher (2005), Schroder and Skiadas (2005) among

others). However, most of the studies in the literature about trading costs effect depend largely

on the form of the frictions assumed in the model. Indeed, with proportional or fixed costs,

the optimal investment policy is shown to be in the form of a no-trade region so that trade

occurs only when the proportion of wealth invested in the risky asset is outside this region

(Dumas and Luciano (1991), Balduzzi and Lynch (1999), Lynch and Balduzzi (2000), Liu and

Loewenstein (2002), Liu (2004), Buss, Uppal, and Vilkov (2015)). Nevertheless, with quadratic

trading costs, the optimal investment policy is no longer in the form of a no-trade region since

the investor trades at each period in small quantities (Heaton and Lucas (1996), Gârleanu and

Pedersen (2013)). Moreover, Balduzzi and Lynch (1999) compute the utility cost due to the

presence of these frictions and obtain an utility cost close to 4% with proportional costs and

about 15% when adding fixed costs to the proportional one.

Our approach is parametric in the sense that the utility function is fully parametric and

assumed to be correctly specified. It differs from nonparametric approaches of Almeida and

Garcia (2012) and Korsaye, Quaini, and Trojani (2021). Korsaye, Quaini, and Trojani (2021)

construct stochastic discount factors (SDF) as the minimum of a measure of dispersion under

constraints where the pricing error is not necessarily zero but close to zero. They show that

the pricing error can be linked to the presence of transaction costs and other frictions.

In this paper, we develop a simple test procedure which allows us to test the significance

of trading costs effect on a given asset in the economy. The most interesting property of this

test procedure is that our results hold for a quite general form of the trading costs in our

model. To our knowledge, this paper seems to be the first one to propose a statistical test

for trading costs effect in the context of portfolio selection. Our test boils down to testing the

nullity of a parameter which is at the boundary of the parameter space under the null. Its

asymptotic distribution is non standard and is derived using results by Andrews (1999). In the
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empirical application, we apply our test procedure to the class of anomalies used in Novy-Marx

and Velikov (2016). We obtain that transaction costs have significant effect for all anomalies

whose trading costs exceed 1% of the gross return. Not surprisingly, trading costs do not have

a significant effect when the risky asset is assumed to be the market portfolio.

Our test procedure relies on the assumption that the model is correctly specified. We wish

to test this assumption using Hansen’s J-test for overidentifying restrictions. However, when

the true parameter is close to the boundary of the parameter space, the standard J-test based

on the χ2 critical value suffers from overrejection. To overcome this problem, we propose a two-

step procedure to test overidentifying restrictions when the parameter of interest approaches

the boundary of the parameter space. This paper is related to the work of Ketz (2019) who

proposes a J-test based on adjusted critical values and a modified J-test. We find by simulations

that our two-step procedure has good small sample properties.

By proposing a simple test procedure to evaluate the effect of transaction costs in the

investment process based on a conditional moment inequality, this paper is also related to the

vast literature on inference using moment inequalities (see Andrews and Guggenberger (2009),

Andrews and Barwick (2012), Andrews and Soares (2010), Bugni (2010) among others). These

papers are concerned with set identification while here our parameters are point identified.

Moreover, we are interested in estimating the slackness of the moment inequality, this slackness

having an interpretation in terms of transaction cost. Our approach is related to Moon and

Schorfheide (2009) who exploit inequality moment conditions to identify some economically

relevant parameters and Romano, Shaikh, and Wolf (2014) who propose a two step approach

to test a finite number of moment inequalities.

Finally, we measure the economic gain from taking transaction costs into account compared

to strategy that ignores transaction costs, assuming proportional trading costs and comparing

the out-of-sample performance of the selected portfolios. For this purpose, we use several

statistics such as the certainty equivalent (CE), the Sharpe ratio (SR) and the portfolio mean.

We find that a rational investor who takes transaction costs into account outperforms a naive

investor for assets whose trading costs have been shown to have significant effect according to

our test procedure.

The rest of the paper is organized as follows. The model and the first order conditions
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from optimization problem are presented in Section 2. In Section 3, we develop a GMM-based

test procedure to test whether trading costs have a significant effect. A two-step procedure for

testing overidentifying restrictions in the GMM estimation is proposed in Section 4. Section 5

presents the empirical analysis where the test developed in Section 3 is applied to the eleven

anomalies used in Novy-Marx and Velikov (2016). In Section 6, we evaluate the economic

gain from taking transaction costs into account. Our conclusion and remarks are presented in

Section 7. Proofs and tables are collected in Appendix.

2 The model and the first order conditions for the optimization

problem

In this section we will start by presenting the model before talking about the optimization

problem.

2.1 The model

We consider a simple economy in which an investor can trade N assets:

1. One risk-free asset (a bond) with known rate Rft+1. In general, Rft+1 will be calibrated to

be the mean of the one-month Treasury-Bill rate observed in the monthly data.

2. The remaining (N − 1) assets are risky assets with gross returns Rj,t+1, j = 2, ..., N

assumed to be predictable using the information available at period t.

3. A portfolio will be defined as a list of weights, πjt, that represent the share of capital

invested in each asset. π1t corresponds to the share of the risk-free asset. The weights sum up

to one, so that
∑N

j=1 πjt = 1 for all t.

4. The gross return of the portfolio is given by π′tRt+1 with πt = (π1t, ..., πNt)
′ and Rt+1 =(

Rft+1, R2,t+1..., RN,t+1

)′
.

We consider an infinitely lived investor with recursive preferences as introduced in Epstein

and Zin (1989, 1991). The investor’s utility function is defined recursively by

Ut =

[
Cρt + β

(
Et

(
U1−γ
t+1

)) ρ
1−γ
] 1
ρ

(1)
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where Ut is the utility level at time t which is a function of the current consumption Ct and

the future expected utility given time t information, Et denotes the conditional expectation

given the information available to agents at time t. β ∈ (0, 1) is the discount factor, γ is the

coefficient of relative risk aversion which controls for investor’s attitude over the states of the

economy. Ψ = 1
1−ρ controls for intertemporal consumption allocation and will be considered as

a measure of the elasticity of intertemporal substitution (EIS).

Recursive utilities permits to disentangle the relative risk aversion from the elasticity of

intertemporal substitution. This property of separability of these two parameters is very useful

when one is interested in a portfolio selection problem (see Campani, Garcia, and Lioui (2019)).

According to Campani, Garcia, and Lioui (2019), it is observed that investors tend to take more

risk for greater values of the EIS and the optimal investment decision is more affected by the

EIS than the relative risk aversion.

Because investors in general face some frictions such as liquidity costs, taxes, transaction

costs, which can affect their behavior on financial market, it is important to incorporate these

frictions when one is interested in a portfolio selection problem. For instance, Dumas and

Luciano (1991), Balduzzi and Lynch (1999), Lynch and Balduzzi (2000), Liu and Loewenstein

(2002), Liu (2004) show that realistic proportional or fixed costs cause optimal portfolio re-

balancing frequency to decline considerably. Lesmond, Schill, and Zhou (2004) also argue that

the large gross spreads observed on momentum trades creates an “illusion of profit opportunity

when in fact, none exists” because of the presence of trading costs. The same argument has

been pointed out by Novy-Marx and Velikov (2016) who show that with trading costs in finan-

cial market, a strategy can have a significant positive alpha relative to the explanatory assets

without significantly improving the investment opportunity set. Therefore, it is important not

to ignore trading costs when one is particularly interested in investors behavior on financial

markets. Hence, we assume that investors face transaction costs when trading on the risky

assets and the transaction costs are assumed to be the only source of frictions in the financial

market. In fact, unlike in He and Modest (1995) who consider four types of market frictions4,

we assume that the transaction costs are the only source of friction in our economy. Trading5

4A no-short-sale constraint, a borrowing constraint, solvency constraints and the transaction costs.
5We use the terms ”trading cost” and ” transaction cost” interchangeably.
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costs could be seen as all costs incurred by investors in the process of buying or selling an asset

on the stock market. They include brokerage fees, cost of analysis, information cost and any

expenses incurred in the process of deciding upon and placing an order. Delay in execution

which cause prices at which one trades to be different from those at which one planned to trade

may be included as well.

Let At denote the wealth at time t and Ct the consumption at time t. We assume that at

each period, the investor consumes a random fraction of his current income so that Ct/At varies

as in Lynch and Balduzzi (2000). This assumption is more realistic than the one in Campbell

and Viceira (2002) who assume a constant consumption-wealth ratio over time.

In our model, the investor does not receive labor income, so he finances consumption entirely

from financial wealth. Indeed, an external source of income to the financial market could affect

investors’ behavior toward risk and bias transaction costs effect on a portfolio selection problem

as well as the result of our test procedure. Hence, assuming only the financial wealth in the

model is a convenient assumption when one is interested in trading costs effect. Therefore, the

law of motion of his total wealth is

At+1 = (At − Ct)
(
π′tRt+1 − ft

)
(2)

where ft ≥ 0 is the transaction cost per dollar of portfolio value. ft is a differentiable nonde-

creasing function of πjt for j = 2, ..., N . It may depend on πjt−1. Moreover, we assume that

there is no transaction costs on the risk-free asset so that the derivative of ft with respect to

π1t equals zero. Besides these conditions, ft can take any form.

We distinguish two types of investors. On the one hand, a naive investor is an agent who

takes the transaction costs as given. This agent does not know the form of f and ignores

that his decision investment will influence the level of the transaction costs. On the other

hand, a rational investor is an agent who has a clear idea about how his decision could affect

the transaction costs. He made the effort to learn the function f and takes into account the

constraint (2) in his investment process. In the next section, we derive the Euler equations

obtained by a rational investor.
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2.2 Euler equations

With no transaction costs (case where ft = 0), the consumption-investment optimization yields

the following two equations:

β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1) (
π′tRt+1

)λ
ρ

]
= 1, (3)

Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1) (
π′tRt+1

)λ
ρ
−1
(
Ri,t+1 −Rft+1

)]
= 0, i = 2, 3, ..., N (4)

where λ = 1− γ. These equations follow from Euler equations. For the details of the proof of

these well-established results, see Epstein and Zin (1989, 1991) and Back (2017). Epstein and

Zin (1991) convert these equalities into moment conditions in order to estimate the unknown

parameters by the generalized method of moments of Hansen and Singleton (1982).

The question we address in this section is how the equalities (3) and (4) are modified by

the transaction costs.

In Appendix A1, we show that, in the presence of transaction costs, we obtain

β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ

p,t+1

]
= 1, (5)

Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Ri,t+1 −Rft+1

)]
− Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

∂ft
∂πit

]
= 0 (6)

where Rp,t+1 = π′tRt+1−ft is the portfolio net return (net of transaction costs) at the optimum.

The second equality can be rewritten as

− Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Ri,t+1 −Rft+1

)]
+ δt = 0, i = 2, 3, ..., N (7)

where δt = Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)
R
λ
ρ
−1

p,t+1
∂ft
∂πit

]
is a nonnegative random variable because ∂ft

∂πit
is non-

negative. In fact, δt depends on the asset i but we do not make the dependence in i explicit

because we are going to estimate the parameters separately for each asset.

Note that an economist who ignores transaction costs will base his estimation on equalities

(3)-(4) instead of (5)-(6) and hence his estimators may fail to be consistent.

The term δt is a nonnegative time-varying stochastic process. Therefore E (δt) ≥ 0, where
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E is the unconditional expectation. This yields the following moment inequality:

− E

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Ri,t+1 −Rf

)]
≤ 0 (8)

where the inequality is strict when f ′ is non zero. Equalities (5) and (7) will be the basis for a

set of moment conditions which will allow us to estimate the parameters of the model and to

construct tests.

3 Testing trading cost effect using GMM estimation

Our goal in this section is to develop a GMM-based test procedure which allows us to test the

significance of the transaction costs effect in the economy.

3.1 The GMM procedure to estimate the parameter of interest

To test if trading costs have a significant effect on a given asset, we first transform the conditions

obtained in (5) and (7) as moment equalities. Let us first look at Equation (5). For any vector

of instruments xt which belongs to the information set available to the investor at time t,

Equation (5) implies the following unconditional moment conditions:

E

[
β
λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ

p,t+1 − 1

]
= 0, (9)

E

[(
β
λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ

p,t+1 − 1

)
xt

]
= 0. (10)

Now consider (7). Equation (7) can be rewritten as a moment equality

E

[
−
(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Ri,t+1 −Rft+1

)
+ δ

]
= 0. (11)

where δ = E (δt) ≥ 0. Because the variables Ct+1

Ct
, Rp,t+1, and Ri,t+1 − Rft+1 are stationary,

E (δt) does not depend on t. So, the parameter δ can be estimated by the generalized method

of moments (GMM) along with the other parameters (β, λ, ρ) . Interestingly, f ′ = 0 implies

δ = 0 and f ′ > 0 implies δ > 0. So testing the nullity of δ gives us information on the

nullity of δt and informs us on the effect of the transaction costs in the economy6. Hence, the

6Our interpretation of δ relies on the fact that the moment conditions are correctly specified. In the empirical
application, we estimated δ with and without the positivity restriction and we obtained almost the same results
(δ̂ was negative only a couple of times when it was very close to zero and not significant). This suggests that the
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test procedure, we are going to propose in the next subsection, will be about the significance

of the parameter δ. Thus, for a given risky asset in the economy, a significant parameter δ

means that investors have to account for trading costs in this asset when including it in their

portfolio. However, when δ is not statistically significant then trading costs could be ignored

in the portfolio selection process without significant consequences in terms of utility loss.

In the sequel, we will estimate the parameters for each asset i, separately. Hence, to simplify

the notation, we denote by Rt+1 the return of some asset i.

Combining Equations (9), (10) and (11), we obtain the following set of moments.

g(Zt, θ) =


β
λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R
λ
ρ

p,t+1 − 1(
β
λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R
λ
ρ

p,t+1 − 1

)
xt

−
(
Ct+1

Ct

)λ
ρ

(ρ−1)
R
λ
ρ
−1

p,t+1

(
Rt+1 −Rft+1

)
+ δ

 (12)

where θ = (δ, β, λ, ρ)′ , Zt =
{
Ct+1

Ct
, Rp,t+1, Rt+1, R

f
t+1, x

′
t

}
, where Ct is the level of consumption

at time t, Rp,t+1 the net return on the portfolio, and Rt the gross return on the risky asset. In

the application, the vector xt contains the lagged values of Ct+1

Ct
and of the Market returns.

We use E(g(Zt, θ)) = 0 with g defined by (12) as the set of moment conditions to estimate

θ = (δ, ψ
′
)
′

by a two-step GMM procedure where ψ = (β, λ, ρ)
′

where λ = 1 − γ. In our

test procedure ψ will be treated as a vector of identified nuisance parameters. Let GT (θ) =

1
T

∑T
t=1 g(Zt, θ) denote the empirical counterpart of the moment conditions where T is the

sample size and lT (θ, Ŵ ) = −T
2GT (θ)

′
ŴGT (θ) the GMM objective function where Ŵ is a

random symmetric positive definite matrix such that Ŵ
P→W with W a non-random symmetric

positive definite matrix.

Let θ̂ denote the two-step GMM estimator of θ using E(g(Zt, θ)) = 0 as the set of moment

conditions. We obtain this estimator using the following procedure.

First, we estimate θ by GMM using W = I so that we obtain the first step estimator,

θ̂(I) = arg maxθ lT (θ, I).

We then estimate S = E(g(Zt, θ0)g(Zt, θ0)′) by Ŝ = 1
T

∑T
t=1 gt(θ̂(I))gt(θ̂(I))′ where gt(θ) =

g(Zt, θ) so that the second step GMM estimator is given by θ̂ = arg maxθ lT (θ, Ŝ−1).

result δ ≥ 0 is robust to possible misspecification.
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3.2 Testing the significance of the transaction cost effect

Our objective in this part is to propose a procedure to test whether the transaction costs have

a significant effect on investor’s welfare (in terms of utility loss) based on the two-step GMM

estimation presented above.

To test whether trading costs have a significant effect, we formulate the following hypothesis:

H0 : δ = 0 vs H1 : δ > 0

where δ ∈ R+ is the parameter which informs us about the transaction cost effect in our

economy. Using a compact form, the test hypothesis becomes:

H0 : Hθ = 0 vs H1 : Hθ > 0

where H = (1, 0, 0, 0) and θ = (δ, β, λ, ρ)
′

the vector of parameters to be estimated by GMM.

To implement this test, one needs to derive the asymptotic distribution for δ̂ under the null

hypothesis. Let us first introduce some useful notations.

Notations.

Let K be the number of moment conditions, G (θ) = E (g (Zt, θ)) and Γ = ∂G(θ0)

∂θ
′ be the

K × 4 matrix of right partial derivatives of G(θ) at θ0. Let lT (θ) = −TGT (θ)′ Ŝ−1GT (θ) /2

and θ̂ = arg max
θ∈Θ

lT (θ).

To derive asymptotic distributions under the null hypothesis, we also need a set of assump-

tions.

Assumption A.

1. Zt =
{
Ct+1

Ct
, Rp,t+1, Rt+1, R

f
t+1, x

′
t

}
is a stationary and ergodic process.

2. θ0 ∈ Θ =
{
θ ∈ R4 : θ = (δ, β, λ, ρ)

′
, δ ≥ 0, 0 ≤ β ≤ 1, ‖θj‖ ≤Mj , j ≤ 4

}
.

3. Identification: G(θ) = 0 if and only if θ = θ0.

4. Dominance: (i) E(supΘ‖g(Zt, θ)‖) <∞

(ii) E(supN ‖
∂g(Zt,θ)

∂θ′
‖) <∞ where N is a neighborhood of θ0 and ∂g(Zt,θ)

∂θ′
denotes the

K × 4 matrix of right partial derivatives of g (Zt, θ) .

5. Ŝ
P→ S where S = E (g(Zt, θ0)g(Zt, θ0)′) is a finite positive definite matrix.

6. Γ is full column rank.
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Assumption A1 is a standard assumption in macroeconometrics. Assumption A2 proposes

a reparametrization of the model so that the resulting moment condition g (Zt, θ) is continuous

in θ, moreover Θ is assumed to be compact which guarantees the consistency of the GMM

estimator. The other assumptions are standard and can be found in textbooks (see for instance

Hayashi (2000)) except that g is not assumed to be differentiable for all θ ∈ Θ but only right

differentiable.

A standard and convenient assumption in the literature is that the true parameter θ0 is an

interior of the parameter space. Indeed, it allows the use of the mean value theorem useful to

establish the asymptotic normality of θ̂. When the true parameter θ0 is an interior point of Θ

and Assumption A is satisfied, the following results hold (see Hayashi (2000)):

�

√
T (θ̂ − θ0)

L→ N (0,
(
Γ′S−1Γ

)−1
).

� Waldstat = T (δ̂−δ0)2

σ̂2
δ

L→ χ2(1), where σ̂2
δ is a consistent estimator of σ2

δ = H
(
Γ′S−1Γ

)−1
H ′.

� J = TGT (θ̂)
′
Ŝ−1GT (θ̂)

L→ χ2(K − 4) where K is the number of moment conditions and

4 the number of estimated parameters.

However, in our economic application, the true parameter θ0 is not an interior point of

Θ under the null hypothesis H0 : δ = 0. When the true parameter is on the boundary, the

asymptotic distribution of θ̂ is no longer a standard distribution (see Andrews (1999)). The

following proposition establishes the asymptotic distribution of the Wald test statistic under

the null hypothesis.

Proposition 1 Let σ̂2
δ denote a consistent estimator of the asymptotic variance of δ̂ .

Assume that Assumption A holds and that θ0 is such that δ = 0 and (θ2, θ3, θ4) are interior

points of the parameter space.Then,

W =
T δ̂2

σ̂2
δ

L→ 1

2
χ2(0) +

1

2
χ2(1)

where χ2(0) is the Dirac distribution at the origin and χ2(1) is a chi-square distribution with

one degree of freedom.

The asymptotic distribution of the Wald test under H0 is a mixture of a chi-square with

one degree of freedom and a mass-point at zero. Its critical values are 1.642, 2.706, and 5.412
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for significance level 10%, 5% and 1% respectively, see Carrasco and Gregoir (2002). On the

other hand when the true parameter is an interior point of the parameter space, the asymptotic

distribution of the Wald test is a chi-square distribution with one degree of freedom χ2(1)

instead of a mixed distribution so that its critical values are given by 2.71, 3.84, and 6.63 for

significance levels 10%, 5%, and 1%. We see that the correct critical values are smaller than

those given by the χ2(1), hence using mistakenly the χ2(1) critical value would yield a test that

lacks of power. To prove Proposition 1, we use results from Lemma 3 in Appendix A2. Its

proof, given in Appendix A2, draws from results by Andrews (1999).

This test procedure is based on the GMM estimation of the parameters assuming the model

is correctly specified. To test the validity of the moment conditions, it is customary to test

overidentifying restrictions.

4 Testing overidentifying restrictions

In this section we are going to propose a two-step procedure which helps us to test overidenti-

fying restrictions when one component of the parameter of interest may be at the boundary of

its parameter space.

4.1 J-test when the true parameter is near or at the boundary of the pa-

rameter space

When the number of moment conditions exceeds the number of unknown parameters to be

estimated by GMM, one can test the model validity by testing overidentifying restrictions.

A common test used for this purpose is the J-test proposed by Hansen (1982) and one of the

assumptions underlying this test is that the true parameter is an interior point of the parameter

space. In this situation, Hansen’s J-statistic satisfies J = TGT (θ̂)
′
Ŝ−1GT (θ̂)

L→ χ2(K−L) where

K is the number of moment conditions and L the number of estimated parameters. However,

when the true parameter is on the boundary of the parameter space, Ketz (2019) shows that the

standard J-test suffers from overrejection. In fact, when only one component of the parameter of

interest is at the boundary of the parameter space, the asymptotic distribution of the J-statistic

is τχ2(K − L) + (1− τ)χ2(K − L+ 1) with τ ∈ [0.5, 1] which is a mixture of two independent
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chi-square distributions. In this situation, the standard J-test based on χ2(K −L) suffers from

overrejection because χ2(K−L) is dominated by τχ2(K−L) + (1− τ)χ2(K−L+ 1). A simple

way to control the nominal size of the J-test in such a situation is to use a conservative critical

value based on 0.5χ2(K −L) + 0.5χ2(K −L+ 1)7 since τχ2(K −L) + (1− τ)χ2(K −L+ 1) is

dominated by 0.5χ2(K−L) + 0.5χ2(K−L+ 1). Ketz (2019) (see Ketz (2017) for more details)

also proposes a modified J-statistic which has the same asymptotic distribution as the standard

J-test under the null hypothesis. The modified J-statistic is given by

JM = 2TM̂T

(
θ̃
)

where

M̂T (θ) = G
′
T

(
θ̂
)
ŴGT

(
θ̂
)
/2 +G

′
T

(
θ̂
)
Ŵ

∂

∂θ′
G
′
T

(
θ̂
)(

θ − θ̂
)

+
(
θ − θ̂

)′ ( ∂

∂θ′
G
′
T

(
θ̂
))′

Ŵ
∂

∂θ′
G
′
T

(
θ̂
)(

θ − θ̂
)
/2,

θ̂ is the GMM estimator of θ and θ̃ is the minimizer of M̂T (θ). Ketz (2019) shows that JM is

asymptotically distributed as a χ2(K−L). However, in finite sample, both tests seem to lack of

power in some directions (see Ketz (2017)). Therefore, we propose a simple two step procedure

to test overidentifying restrictions.

4.2 A two-step procedure to test overidentifying restrictions

In this part of our analysis, we are going to propose a two-step method for testing overidentifying

restrictions in our GMM estimation procedure. In the first step we will test the significance of

δ based on a first step estimation. In the second step, we will use this information to decide

whether to use the standard critical value or the adjusted critical value of Ketz (2019) to

implement the J-test.

Nonetheless, to implement the test about the nuisance parameter in the first step, we need

to have a first step consistent estimator of the parameter δ. So, we need some assumptions

about the set of moment conditions used in our GMM estimation procedure.

Let g =

 g1

g2

 where E [g(Zt, θ)] = 0 is the set of moment conditions to be used in our

7Critical values can be computed using the simple algorithm described in Appendix A4.
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estimation process, g1 is a k1 × 1 vector and g2 a k2 × 1 vector. Hence, we obtain that

E [g(Zt, θ)] = E

 g1(Zt, θ)

g2(Zt, θ)

 =

 E [g1 (Zt, θ)]

E [g2(Zt, θ)]


To implement correctly our procedure, let us start by the following assumption.

Assumption B. E [g1(Zt, θ)] = 0 if θ = θ0 with k1 ≥ L where L is the number of parameters

to be estimated by GMM.

Assumption B implies that there is a subset of moment conditions which are correctly

specified in order to identify the parameter θ so that we can obtain a consistent first step

estimator of θ denoted by θ̃ based only on E [g1(Zt, θ)]. A similar assumption can be found

in Moon and Schorfheide (2009), see their assumption 1(d). Using these two assumptions, we

describe our procedure as follows:

Step 1: Test the following hypothesis about the unknown nuisance parameter δ:

H0: δ = 0 vs H1: δ > 0 at the significance level α1 ∈ (0, 1). The test of this step is

implemented based on the assumption B so that we can obtain a consistent estimator of θ using

only E [g1(Zt, θ)] = 0 as the set of moment conditions in the GMM process. The test statistic

used to test the null hypothesis in this situation is the Wald test statistic given by:

W =
T δ̃2

σ̃2
δ

where σ̃2
δ is a consistent estimator of the asymptotic variance of δ̃ and T is the number of

observations used in the estimation process. Using the result of Proposition 1 under assumption

A, we obtain that under the null hypothesis

W
L→ 1

2
χ2(0) +

1

2
χ2(1)

where critical values have been given in Carrasco and Gregoir (2002) by 1.642, 2.706, and 5.412

for significant level 10%, 5%, and 1% respectively. We also simulate critical values for other

significant levels and report them in Table 11 in Appendix B.

Step 2: In this step we use the J-test to test overidentifying restrictions in our GMM esti-

mation based on the entire available set of moment conditions E [g(Zt, θ)] = 0 at the significance

level α2 ∈ (0, 1). In fact, as mentioned before when one element of the vector of parameters

to be estimated by GMM is close to the boundary of its parameter space, the asymptotic dis-
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tribution of the J-statistic could be different from the standard one depending on the value

of this unknown nuisance parameter. Therefore, information obtained at the first step about

the unknown nuisance parameter will be used to decide if we have to use the standard critical

value or the adjusted critical value. Hence, if we denote by cα1 the critical value of the test

implemented in the first step then in the second step the J-test is implemented as follows:

� If W > cα1 then the critical value of the J-test is the standard one χ2
α2

(K − L)

� If W ≤ cα1 then the critical value of the J-test is (0.5χ2(K − L) + 0.5χ2(K − L+ 1))α3

Let c1α2 denote the (1− α2)- quantile of a χ2 (K − L) and c2α3 the (1− α3)- quantile of the

mixture 0.5χ2 (K − L) + 0.5χ2 (K − L+ 1) .

Remark that c2α3 > c1α3 because the distribution of 0.5χ2 (K − L) + 0.5χ2 (K − L+ 1)

dominates that of χ2 (K − L).

Let H0 be the null hypothesis that E [g (Zt, θ)] = 0 for some θ ∈ Θ.

The following proposition gives us an idea about the size of this procedure.

Proposition 2 Assume that Assumption A holds. A two-step test for the null hypothesis

H0 which rejects H0 when W > cα1 and J > c1α2 or when W ≤ cα1 and J > c2α3 has an

asymptotic size smaller than max (α1, α2) + α3.

The proof of Proposition 2 is given in Appendix A3. It takes into account the fact that the

null hypothesis δ = 0 may be rejected with probability α1 even though δ is really equal to zero.

Moreover, it does not require independence between W and J. Given we use upperbounds, it

is expected that this test will be conservative.

The result in Proposition 2 implies in particular that our two step procedure controls size

for all α1, α2, and α3 chosen in such a way that max (α1, α2) + α3 ≤ α where α ∈ (0, 1) is the

global size of our specification test.

4.3 Simulations on our two-step procedure

Following Hansen and Singleton (1983), we consider a single-good economy of identical con-

sumers, whose utility functions are

U (Ct) =
Cγt
γ
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where γ < 1 and Ct is aggregate real per capita consumption. We have 2 assets in the economy,

R1t denotes the return of the risk-free asset, whereas R2t denotes the return of the risky asset

for which some transaction costs may be relevant. Hence, the set of Euler Equations from the

consumption-investment optimization problem are given by

Et

[
β

(
Ct+1

Ct

)γ−1

R1,t+1

]
= 1 (13)

Et

[
β

(
Ct+1

Ct

)γ−1

R2,t+1

]
= 1− δt (14)

where δt is a random variable. Let us denote by Xt+1 = log
(
Ct+1

Ct

)
, ri,t+1 = log (Ri,t+1),

ui,t+1 = log (Ui,t+1) where Ui,t+1 =
(
Ct+1

Ct

)γ−1
Ri,t+1, i = 1, 2 . Let Yt = (Xt, r1,t, r2,t)

′
.

In our simulations, we will generate Yt as a V AR(2) process with Gaussian error. More

precisely,

Yt = a+BYt−1 + CYt−2 + εt (15)

εt ∼ N (0,Σε). At each iteration, the first two values of Yt will be drawn using the marginal

distribution of Yt which is also a normal distribution. The other values of Yt are then obtained

using the dynamic in (15). Hansen and Singleton (1982, 1983) show that data generated

according to (15) satisfy conditions (13) and (14). The parameters θ = (γ̃, β, δ)
′

with γ̃ = γ−1

are estimated by GMM based on the orthogonality conditions in (13) and (14) and using as

instruments (1, Yt, Yt−1)
′

for ( 13) and 1 for (14) where δt is replaced by δ. In our simulations,

to investigate the power of our test, we will replace ( 13) by

Et

[
β

(
Ct+1

Ct

)γ−1

R1,t+1

]
= 1− µ (16)

where µ is a constant. When µ 6= 0, the moment conditions based on (16) are not correctly

specified. This particular case will be used to evaluate the power of our procedure under the

alternative.

The parameters a, B, and C will be calibrated using monthly data from July 1973 to De-

cember 2013. The calibrated parameters are given in Appendix A5. The calibration is done for

two different risky assets: the market portfolio (where δ may be 0) and the seasonality (where δ

may be non zero because of transaction costs). The results of our simulations are summarized in

Tables 1 and 2. These simulations are done with T = 250 and 100,000 replications. Columns 7,
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8, and 9 contains the results about the J-test implemented using the standard critical value, the

adjusted critical value, and the modified J-test proposed by Ketz (2019) respectively. Columns

2, 3, 4, 5, and 6 give the simulation results of our J-test implemented using a two-step procedure

for various values of α1, α2, and α3. The first row (case µ = 0 ) corresponds to the size of the

tests whereas the four other rows correspond to the power of the tests.

Table 1: Empirical rejection rate when the risky asset is the market portfolio at the
significant level α = 5%

µ
Two step J-test classical

J-test
J-test with

ACV
Modified

J-testα1 = 2.5
α2 = 2.5
α3 = 2.5

α1 = 4
α2 = 4
α3 = 1

α1 = 1
α2 = 1
α3 = 4

α1 = 4.7
α2 = 4.7
α3 = 0.3

α1 = 0.5
α2 = 0.5
α3 = 4.5

0.00 0.0286 0.0321 0.0448 0.0215 0.0505 0.0941 0.0506 0.0497
-0.1 0.4487 0.4870 0.7687 0.4547 0.8028 0.8287 0.7867 0.7960
-0.2 0.5348 0.5281 0.8027 0.5157 0.8370 0.8710 0.7934 0.8254
0.1 0.5187 0.5587 0.9587 0.5260 0.9941 0.9963 0.9945 0.9938
0.2 0.6571 0.6378 0.9281 0.6425 0.9879 0.9926 0.9873 0.9863

Table 2: Empirical rejection rate when the risky asset is the seasonality at the
significant level α = 5%

µ
Two step J-test classical

J-test
J-test with

ACV
Modified

J-testα1 = 2.5
α2 = 2.5
α3 = 2.5

α1 = 4
α2 = 4
α3 = 1

α1 = 1
α2 = 1
α3 = 4

α1 = 4.7
α2 = 4.7
α3 = 0.3

α1 = 0.5
α2 = 0.5
α3 = 4.5

0.00 0.0312 0.0438 0.0439 0.0448 0.0499 0.0510 0.0351 0.0512
-0.1 0.6289 0.7905 0.7678 0.7879 0.8148 0.8189 0.7542 0.8175
-0.2 0.6735 0.7781 0.8081 0.8098 0.8267 0.8386 0.7785 0.8227
0.1 0.8810 0.9108 0.9270 0.9480 0.9621 0.9681 0.9105 0.9598
0.2 0.8531 0.9148 0.9470 0.9638 0.9970 0.9980 0.9398 0.9849

When the parameters are calibrated to match the market portfolio, we observe in the sim-

ulations that the parameter δ is statistically null for more than 86% of cases with an average

value of 2.3e−5. Therefore, in this situation, the parameter δ is at the boundary of the pa-

rameter space. In Table 1, we observe that the classical J-test fails to control the size and

suffers from over rejection. This result shows that at the boundary of the parameter space, the

J-statistic using the χ2(K −L) distribution as the asymptotic distribution over-rejects the null

hypothesis. Nonetheless, for a wise choice of α1, α2, and α3, our two-step procedure correctly
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controls the size with very good power. Moreover, our procedure out-performs the J-test based

on the adjusted critical even if this test also controls the size in that case. Our test and the

modified J-test perform similarly.

When the parameters are calibrated to match the seasonality as anomaly, simulations show

significant δ with an average value of 0.0172. Table 2 shows that, in this situation, the standard

J-test and the modified J-test slightly overreject under H0. The J-test based on the adjusted

critical underrejects under H0. Our two-step procedure correctly controls the size for appropri-

ate choice of α1, α2, and α3 and gives most of the time better results than the modified J-test.

We recommend using the values α1 = α2 = 0.5% and α3 = 4.5% as they seem to deliver the

most powerful test.

In the next section we are going to apply our test procedures to empirical data.

5 Empirical Analysis

In this section we are going to apply empirically the test procedures described in Sections 3

and 4 in a context of portfolio selection with trading costs.

5.1 Data and data sources

In our empirical analysis, we use monthly data from July 1973 to December 2013. The monthly

rate of the return on the value-weighted NYSE index is used as a proxy for the return on the

market portfolio Rp,t+1. Note that our Equations (5)-(6) hold when Rp,t+1 is the net return

of the portfolio (net of transaction costs). However, in the application, we replace Rp,t+1 by

the market gross return. Given transaction costs on the market are notoriously low, Equations

(5)-(6) are still expected to hold using gross returns instead of net returns. The one-month

Treasury-Bill (T-Bill) rate is used as a proxy for the risk-free rate and Rft+1 is calibrated to

be the mean of the one-month Treasury-Bill rate observed in the data. The consumption Ct

is taken to be the U.S. real per capita consumption of nondurable goods and services, and is

constructed using data from the Federal Reserve Bank of St Louis database. The monthly CPI

inflation corresponding to the definition of the consumption adopted is also used to deflate the

stock return and the risk-free rate. The return on the market portfolio and the interest rate are
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from the Fama-French database and the CPI are from the Federal Reserve Bank of St. Louis

database. The returns on the risky assets (here anomalies) are from Robert Novy-Marx Data

Library.

5.2 Descriptive statistics about assets returns

In this analysis we use two measures of per capita consumption. The first one is the expenditure

on nondurable goods and the second one is the expenditure on nondurable goods and services.

All the nominal variables such as nominal asset returns and nominal consumption are converted

into real variables using the CPI inflation index corresponding to the definition of consumption

adopted. The real consumptions are put into per capita terms using total civilian population

from the Federal Reserve Bank of St. Louis database.

Figure 1 gives us the estimated trading costs on a specific anomaly namely the industry

relative reversals from July 1973 to December 2013 based on data from Novy-Marx. Those

trading costs are expressed as a percentage of the gross return. The average trading costs in

this strategy is about 1.86% of the gross return with strong fluctuations between 1973 and 2013.

As we can see from the graph, these frictions represent an important part of the gross return.

So, one should not ignore trading costs when investing in this asset.

Figure 1: Trading costs in the portfolio based on the Industry relative reversals
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Table 3: Descriptive statistics

Variables
Mean

Nondurable and services
Mean

Nondurable

ct+1/ct
1.0009

(0.0039)
1.0006

(0.0072)

Mt
1.0082

(0.0488)
1.0149

(0.0811)

Bonds
1.0043

(0.0039)
1.0074

(0.0060)

Size
1.0039

(0.0494)
1.0062

(0.0825)

Gross Profitability
1.0011

(0.0393)
1.0028

(0.0641)

Asset Growth
1.0042

(0.0341)
1.0071

(0.0587)

Piotroski’s F-score
1.0012

(0.0449)
1.0021

(0.0782)

PEAD (SUE)
1.0028

(0.0422)
1.0046

(0.0677)

Industry momentum
0.9961

(0.0534)
0.9923

(0.0938)

Industry relative reversals
0.9948

(0.0424)
0.9892

(0.0718)

High frequency combo
1.0028
(0.033)

1.0031
(0.0578)

Short run reversals
0.9905

(0.0505)
0.9820

(0.0870)

Seasonality
0.9938

(0.0403)
0.9890

(0.0670)

Industry Relative Reversals
(Low volatility)

1.0029
(0.0359)

1.0037
(0.0591)

Table 3 summarizes descriptive statistics on some variables of interest used in the estimation

process. Columns 2 and 3 of this table contain the empirical mean of each variable in Column

1 and, in brackets, their empirical standard deviation. The difference between Columns 2

and 3 comes from the measure of CPI index (which changes with the measure of per capita

consumption) used to transform nominal variables into real variables. Note that Mt is the real

return on the market portfolio and ct+1/ct is the real consumption growth. For anomalies, we

use the real returns net of transaction costs to compute statistics for eleven anomalies under

consideration.
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Those descriptive statistics reveal that returns on stock market are substantially more

volatile than the consumption growth and the bond market is very little volatile. Moreover, real

returns appear to be relatively more stable when services are added to consumption measure

indicating that the inflation index does not differ much across these measures of consumption.

5.3 Estimation results and testing

We estimate the parameter θ = (δ, β, λ, ρ)
′

by GMM using Equation (12) and the set of instru-

ments8 given by xtl = (1, ct
ct−1

, ...,
ct−l
ct−l−1

,Mt, ...,Mt−l). We consider l = 1, 2, 3 and two measures

of per capita consumption. To test whether trading costs in a given strategy have a significant

effect, we use the result of Proposition 1.

Since the main objective is to evaluate the effect of transaction costs, we report here the

results about parameter δ, the other parameters are reported in Appendix B. Table 4 contains

our estimation results when the consumption is measured by the nondurable goods. Table 5

provides results when the consumption is measured by the nondurable goods and services. The

results of these two tables are obtained with l = 2. The results for l = 1, 3 are given in Tables

12 to 14 in Appendix B.

To test overidentifying restrictions, we use the two-step procedure proposed in Section

4. The p-value of this test is computed differently depending on the result of the first step

procedure. If the parameter δ is significant at the first step9 at the significance level α1 then

the p-value is calculated using a chi-square distribution and is compared to α2. But, if δ is not

significant at the first step, the p-value is calculated using a mixture of independent chi-square

distributions and is compared to α3. We choose α1 = α2 = 0.5% and α3 = 4.5%. This choice

is motivated by the simulations of Section 4.

Column 2 in Tables 4 and 5 contains estimation results for various anomalies from Novy-

Marx and Velikov (2016) using gross return and hence ignoring transaction costs. Quantities

in brackets are statistics used to test whether δ is significant or not as in Proposition 1. These

results show that the transaction costs are significant for most anomalies in particular all

anomalies with trading costs exceeding 1% of their gross return (according to Novy-Marx and

8The number of moment conditions is K = 2 (l + 1) + 2 = 2l + 4.
9For the first step, we estimate δ using l = 1.
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Table 4: GMM estimation result for testing trading costs effect

Nondurable goods (l = 2)

Strategy
Ignoring transaction costs Using the net return

δ̂ J test δ̂ J test

Market Portfolio
0.00090176
(0.058461)

16.43+

(10.6456)

0.015374
(0.9789)

16.9+

(10.6456)

Size
6.1536e-12

(2.7812e-18)
26.76+

(10.6456)

1.2493e-11
(1.1455e-17)

27.24+

(10.6456)

Gross Profitability
0.0047685∗

(1.9583)
6.946

(10.6456)
0.0038976
(1.3033)

6.847
(10.6456)

Asset growth
0.0023897
(0.82532)

7.356
(10.6456)

0.0005624
(0.044832)

7.244
(10.6456)

Piotroski’s F-score
6.8979e-12

(3.9039e-18)
18.7+

(10.6456)

3.109e-12
(7.3844e-19)

20.62+

(10.6456)

PEAD (SUE)
0.0050133
(3.4331)

6.828
(10.6456)

3.5299e-13
(1.7294e-20)

8.768
(10.6456)

Industry Momentum
0.0058073∗

(1.8546 )
8.455

(10.6456)
5.4945e-14
(1.009e-22)

10.18
(10.6456)

Industry Relative Reversals
0.0082473∗∗∗

(7.0897)
6.812

(14.8603)
3.0125e-12

(9.2777e-19)
64.4+

(10.6456)

High Frequency Combo
0.017584∗∗∗

(42.325)
6.779

(14.8603)
4.1782e-12
(2.668e-18)

13.81+

(10.6456)

Short-run reversals
0.0075165∗∗∗

(5.997)
8.401

(10.6456)
1.0064e-12

(6.0297e-20)
7.05

(10.6456)

Seasonality
0.0059086∗∗

(4.2543)
10.38

(10.6456)
5.8072e-12

(3.9226e-18)
10.23

(10.6456)

Industry Relative Reversals
(Low volatility)

0.010918∗∗∗

(18.7112)
6.72

(14.8603)
5.925e-13

(5.9442e-20)
14.81+

(10.6456)

∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at α2 or α3.

Quantities in brackets under δ̂ are Wald statistics. Quantities in brackets for J-test are critical values.

Velikov (2016)). Hence, for each of those strategies, the relation defined in (8) is satisfied with

a strict inequality. Therefore, investors should incorporate these frictions when they have to

participate to the financial market. Not surprisingly, the transaction costs are not significant for

the market portfolio. We could explain this result essentially by the fact that trading costs on

this asset are quite low so that the utility loss of not accounting for these frictions is negligible

as well as the effect on the optimal portfolio. So, if the market portfolio is used as the risky

asset in our economy, the relation defined in (8) is satisfied with equality as in a frictionless

setting.
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Table 5: GMM estimation result for testing trading costs effect (continued)

Nondurable goods and services (l = 2)

Strategy
Ignoring transaction costs Using the net return

δ̂ J test δ̂ J test

Market Portfolio
0.0019618
(0.27033)

15.09
(10.6456)

0.0020604
(0.29794)

14.84+

(10.6456)

Size
2.9695e-13

(6.5073e-21)
25.77+

(10.6456)

9.3458e-11
(6.442e-16)

26.19+

(10.6456)

Gross Profitability
0.0046471∗

(1.8368)
8.116

(10.6456)
6.9159e-13
(5.862e-20)

8.905
(10.6456)

Asset growth
0.0019783
(0.56105)

8.223
(10.6456)

0.00016817
(0.0039817)

8.083
(10.6456)

Piotroski’s F-score
2.7021e-14

(5.9428e-23)
19.88+

(10.6456)

5.2315e-12
(2.047e-18)

21.68+

(10.6456)

PEAD (SUE)
0.0046628∗∗

(2.9897)
7.339

(10.6456)
4.0324e-15

(2.2945e-24)
9.454

(10.6456)

Industry Momentum
0.008057∗∗

(4.4588)
6.128

(10.6456)
4.5158e-13

(7.8251e-21)
10.62

(10.6456)

Industry Relative Reversals
0.008861∗∗∗

(8.1664)
7.791

(14.8603)
1.2432e-13

(1.5634e-21)
62.12+

(10.6456)

High Frequency Combo
0.017362∗∗∗

(41.2747)
10.03

(14.8603)
4.2807e-12

(2.8228e-18)
16.56+

(10.6456)

Short-run reversals
0.0076306∗∗∗

(6.1624)
8.08

(10.6456)
1.443e-12

(1.245e-19)
8.61

(10.6456)

Seasonality
0.0059995∗∗

(4.3444)
10.06

(10.6456)
.8.2808e-14
(1.6283e-22)

5.93
(10.6456)

Industry Relative Reversals
(Low volatility)

0.011441∗∗∗

(20.6188)
9.848

(14.8603)
3.3704e-14

(8.6602e-23)
39.11+

(10.6456)

∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at α2 or α3.

Quantities in brackets under δ̂ are Wald statistics. Quantities in brackets for J-test are critical values.

All anomalies which exhibit a significant trading cost effect when the consumption is mea-

sured by the nondurable goods have also significant trading costs effect with nondurable goods

and services. In the latter case, one more anomaly has significant δ, namely PEAD. Moreover,

the number of models with significant trading cost effect tends to increase with the number

of instruments (see Tables 13 and 14). In fact, when the number of instruments increases,

estimation variance becomes smaller in such a way that the results of the tests become more

accurate even though the estimation bias could increase. But we can notice that estimation

results are very similar across the set of instruments used in the estimation process. Hence, our
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results seem robust to the number of instruments.

Column 4 in Tables 4 and 5 contains the results of the hypothetical case where net returns are

used for Rj,t instead of gross returns10. In this case, the relation (8) should hold with equality.

As expected, we find that the parameter δ is not significant for all anomalies confirming the

validity of our procedure.

To test the assumption that our model is correctly specified, a two step J-test is implemented

for each anomaly. The results of this analysis are reported in Columns 3 and 5 in Tables 4

and 5. According to these results, when transaction costs are ignored (the net return is not

observed), the null hypothesis is rejected only for the market and two anomalies: the size and

the Piotroski’s F-score. Hence, models based on these risky assets are not correctly specified.

In the hypothetical case where the net returns are used, the null is rejected for five anomalies

and the market.

The estimates of the other parameters that characterize investors preferences are given

in Tables 15 to 17 in Appendix. Standard errors are in brackets. We notice that, for most

anomalies, the estimates of the preference parameters are significant. Using the result of this

estimation, we can estimate the elasticity of intertemporal substitution by 1
1−ρ̂ which is in (0, 1)

in most cases. This quantity is close to 0.7 for most of the anomalies. A similar result has been

obtained by Epstein and Zin (1991). The coefficient of relative risk aversion given by 1 − λ is

estimated by 1− λ̂. According to our estimation, this coefficient is close to 1 as in Epstein and

Zin (1991) because our λ̂ is of order of −0.04. Moreover, we notice throughout our estimations

that the inverse of the elasticity of intertemporal substitution does not coincide with the risk

aversion supporting the idea of using a utility function that separates these two parameters.

Moreover, the estimates are similar whether we use gross returns (columns ”Ing TC”) or

net returns.

5.4 Comparison with the literature

He and Modest (1995) study the impact of market frictions on the equilibrium conditions

using an expected utility. In the presence of trading costs, they derive a lower and an upper

bounds for the expected returns weighted by the intertemporal marginal rate of substitution,

10Net returns are computed using the transaction costs of Novy-Marx and Velikov (2016)
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Et

[
β u
′(Ct+1)
u′(Ct)

Rj,t+1

]
. Since they consider proportional costs which are constant over time, these

bounds are found to be constant. In our case, we obtain the following relation (see Appendix

A6 for more details):

Et

[
β
λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1Rj,t+1

]
= 1 + χj,t (17)

for j = 2, ..., N where χj,t is a random variable which may be positive or negative depending

on the values of πit and ∂f/∂πit for i = 1, ..., N . In the absence of transaction costs, ft = 0 and

χj,t = 0, so that we obtain the usual equilibrium condition

Et

[
β
λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1) (
π′Rt+1

)λ
ρ
−1
Rj,t+1

]
= 1. (18)

If δt is considered as a proxy for the transactions costs in the investment process, an inter-

esting way to model this parameter could be δt = δ0FLt as in Farouh and Garcia (2021) where

δ0 is a positive constant to be estimated and FLt is the funding liquidity at time t used as a

measure of financial risk. To evaluate the effect of transaction costs in this situation, it suffices

to estimate δ0. In this case, Equation (7) becomes

Et

{
−
(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Rt+1 −Rf

)
+ δ0FLt

}
= 0 (19)

This new equation can then be used combined with Equation (5) to form the moment conditions

to estimate δ0 by GMM11. We use the same dataset as in Farouh and Garcia (2021) which spans

the period from January 1986 to December 2013. The results of this analysis are reported in

Tables 18-19 in Appendix12. We obtain similar results as in Tables 4-5. Then, δt can be

estimated as follows δ̂t = δ̂0FLt which allows us to obtain the dynamic of the parameter δt over

time.

The estimators δ̂t, once averaged over time, can be used to evaluate the transaction costs.

Table 21 contains in Column 3 the estimates of the transaction costs using the average of the

δ̂t over the considered period converted in percentage. We also report in Column 2 the average

trading costs on these strategies provided by Novy-Marx and Velikov (2016). We notice that

our estimates are quite close to the average trading costs obtained by Novy-Marx and Velikov

11We use the same set of instruments to convert the conditional moment conditions (5) and (19) into uncon-
ditional moments. These instruments are (1, ct

ct−1
, ...,

ct−l

ct−l−1
,Mt, ...,Mt−l).

12The results for the pre-test with l = 1 are given in Table 20.
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(2016) using a different estimation method. Indeed, Novy-Marx and Velikov (2016) evaluate

trading costs on anomalies using a Bayesian Gibbs Sampler on a generalized Roll (1984) model

of stocks price dynamics, while we use GMM on moments (5) and (19).

6 Economic benefits from accounting for trading costs

In this section, we are going to measure the economic gain an investor can obtain when he

accounts for trading costs in the portfolio selection process. This analysis will be done by

comparing the out-of-sample performance of portfolio from our model (with trading costs) to

the null model which ignores trading costs in the investment process. Assume that we have a

sample of monthly observations of size T1. We consider a finite life horizon (T2 months with

T2 < T1) investor who reallocates his portfolio at the end of each month of his life cycle. Then

we use the first T1−T2 observations to estimate unknown parameters about the vector of state

variables in the optimization problem. These estimators are used to implement the numerical

procedure developed in Appendix A7 in order to obtain the portfolio rule at each period of

time. Hence, at each time period of his life cycle (t = T1 − T2 + 1, ..., T1), our investor finds

portfolio weights to maximize the expected utility. The investor then holds those assets for a

given period (a month), realizes gains and losses and recomputes optimal portfolio weights for

the next period. This procedure is repeated for each time period through the investor’s life

cycle generating a time series of out-of-sample portfolio returns to evaluate the performance

of the models. We look at the performance of two different strategies, one which account for

trading costs and the other one which ignores the trading costs.

To simplify, we assume that there are only two types of assets: the riskless asset with return

Rft+1 and the risky asset with return Rt+1. As in Balduzzi and Lynch (1999) and Lynch and

Balduzzi (2000), we assume that the transaction cost ft are proportional to wealth. So that

the consumer’s wealth At+1 satisfies

At+1 = (At − Ct) (1− ft)
(
πt

(
Rt+1 −Rft+1

)
+Rft+1

)
where Ct is the consumption, πt the share of wealth allocated to the risky asset and ft the
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transaction cost per dollar of portfolio value. Moreover, we model ft as follows:

ft = φp | πt − π̂t |

where π̂t is the proportion of the risky asset inherited from the previous period and given by

π̂t =
πt−1(1− kt−1)At−1(1− ft−1)Rt

At
=

πt−1Rt

πt−1(Rt −Rft ) +Rft

where kt is the consumption to wealth ratio at time t and φp is the proportional cost parameter

associated with the risky asset (see Lynch and Balduzzi (2000) for more details). We still

assume that the risky asset is one of the anomalies used in Novy-Marx and Velikov (2016) so

that the parameter φp is given in Table 10 for each strategy. For example, when the risky

asset in the economy is taken to be the industry-relative reversals (IRR), the proportional cost

parameter φp is 1.78% with a significant trading cost effect according to our empirical results

obtained in Section 5.

Several statistics such as the mean of the portfolio return (Mean), its standard deviation

(SD), and the Sharpe Ratio (SR) will be used to evaluate the out-of-sample performance of our

portfolio selection process. The SR is obtained using the following relation:

SR =
E(Portfolio)−Rf

σPortfolio

Because E(Portfolio) and σPortfolio are unknown, we estimate those quantities by their em-

pirical counterparts from the sample of the optimal portfolio returns.

We report these statistics in Tables 6 and 7 (for a 10 years horizon investor with T = 120)

for two different anomalies. More specifically, we obtain Table 6 by using the parameters

calibrated on the industry-relative reversals as the risky asset (φp=1.78%) and Table 7 with the

parameters calibrated on the asset growth (φp=0.11%). The Panel A of those two tables gives

statistics when the investor accounts for trading costs in the portfolio selection problem and the

panel B contains the same statistics when the investor ignores the trading costs. Moreover, we

compute those statistics for two different values of the elasticity of intertemporal substitution

EIS (see Column 1 of each table) when the relative risk aversion is set to γ = 6. We report the

out-of-sample mean of the optimal portfolio in Column 2, the out-of-sample volatility given by

the standard deviation in Column 3 and the out-of-sample excess return per unit of deviation
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in Column 4.

Table 6: Out-of-sample performance analysis for the Industry-relative reversals with
γ = 6

EIS Mean SD SR

Panel A: Accounting for transaction costs

0.8 0.16 0.0105 0.1349
2 0.09 0.0107 0.0715

Panel B: Ignoring transaction costs

0.8 0.08 0.010 0.0487
2 0.03 0.0127 0.0231

Table 6 reveals that accounting for transaction costs permits to outperform the situation

where transaction costs are ignored in terms of the portfolio mean and the Sharpe ratio. For

instance, we can see that the Sharpe ratio obtained when the EIS = 0.8 is 0.1349, about 2.76

times the Sharpe ratio when transaction costs are ignored. A similar result is obtained with

EIS = 2. According to the SR there is a large economic gain from accounting for trading costs

in the investment process when the risky asset is the IRR. This finding is consistent with the

result of the empirical analysis about the effect of trading costs for this strategy. Indeed, we

found empirically that the trading costs have a significant effect when the risky asset is assumed

to the IRR.

The second finding is that the effect of ignoring trading costs on the portfolio performance

is more important for EIS = 2 than for EIS = 0.8. In fact, the effect of ignoring transaction

costs is amplified by the fact that investors with EIS > 1 tend to be more aggressive on

the financial market. More precisely, when EIS < 1, consumers’ income effect is larger than

their substitution effect so that investors prefer to consume more today and participate less

to the financial market. In this situation, the effect of the transaction costs on the portfolio

performance is attenuated by the fact that investors do not want to take risks in the financial

market. However, EIS > 1 implies that the substitution effect is stronger than the income effect

and investors prefer participation to the financial market in order to smooth the consumption in

the future. This will amplify the effect of the trading costs on the optimal portfolio performance.

When the risky asset in the economy is assumed to be the asset growth (Ag) (as in Table

7), the proportional cost parameter φp is 0.11%. We found through the empirical analysis
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Table 7: Out-of-sample performance analysis for the Asset growth with γ = 6
EIS Mean SD SR

Panel A: Accounting for transaction costs

0.8 0.33 0.0110 0.3029
2 0.39 0.0114 0.3400

Panel B: Ignoring transaction costs

0.8 0.31 0.0101 0.2974
2 0.38 0.0116 0.3254

that trading costs on this strategy do not have a significant effect on the investment decision

according to the test procedure developed in Section 3.

We can notice from Table 7 that no significant difference in terms of out-of-sample perfor-

mance exists between the two investment strategies. In fact, as we saw in Section 5, trading

costs have no effect on the investment decision for this asset. Thus, the two optimal investment

policies are very close to each other.

The results of Tables 6 and 7 imply that if trading costs have no effect on investment decision

according to our test procedure of Section 3, using trading costs in the portfolio selection process

does not significantly improve the out-of-sample performance (see Table 7). In this context

investors could ignore those frictions in their investment process to simplify their optimization

problem. However, when a significant trading cost effect is obtained through the test procedure

of Section 3, investors need to account for trading costs in the portfolio selection process in

order to improve the out-of-sample performance of the optimal portfolio (see Table 6).

We also use an utility based statistic which is the certainty equivalent (CE) return. This

is the most relevant metric to assess the out-of-sample performance since it quantifies benefits

based on investors’ preferences. Here, the CE represents the annualized risk-free return that

gives the investor the same utility as the portfolio obtained without trading costs in the model.

It is a form of compensation which makes the investor indifferent between the two investment

strategies. When the CE > 0, investors ask a certain compensation to be added to the null

model in order to obtain the same utility as in the model with trading costs. This implies that

there is a gain from accounting for trading costs in the investment process. However, when the

CE ∼= 0, we conclude that there is no significant economic gain from accounting for trading

costs in the portfolio selection process.
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Table 8: The Certainty Equivalent for two risky assets with γ = 6
EIS The industry relative reversals The Asset Growth

0.8 0.0300 0.00367
2 0.0700 0.00524

Table 8 reports the CE for two risky assets across two different values of the EIS. We can

notice through this table that the CE is very close to zero when the risky asset in the economy

is assumed to be the Ag. Hence, accounting for transaction costs does not improve significantly

the investor’s utility compared to ignoring them. This result is due to the fact that trading costs

have no effect on investment decision for this strategy as we saw it from our empirical results

given in Tables 4 and 5. However, we obtain an important CE for the model with the IRR.

According to this statistic, investors have to take into account trading costs in their investment

process in order to improve the out-of-sample performance of the optimal portfolio in terms of

the CE.

We also observe that the CE is larger for EIS = 2 compared to what we obtain for EIS =

0.8. This result means that investors with large EIS (for instance EIS > 1) ask for more

compensation in order to be indifferent between the two strategies. Thus, as observed for the

SR, the trading costs effect on the portfolio performance seems to be important for greater

values of the EIS. This analysis about the trading cost effect on the portfolio performance also

justifies the importance of distinguishing the relative risk aversion from the EIS.

7 Conclusion

In this paper we analyze a portfolio optimization problem of a recursive preference investor who

faces transaction costs on stock market. In this context, we consider a simple economy with

two assets including a risky asset and a risk-free asset.

We develop a simple test procedure based on a two-step GMM estimation which allows us to

test whether transaction costs have a significant effect on investors welfare in the economy. An

interesting property of this test procedure is that it allows for a flexible form of the trading costs.

We also propose a two-step procedure to test overidentifying restrictions when one component

of the parameter of interest could be at the boundary of its parameter space. We find through
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a simulation exercise that our two-step procedure has good properties for a wide choice of the

nominal size of the first step of the procedure. Our procedure outperforms the J-test based on

the adjusted critical value and the modified J-test proposed by Ketz (2019) when the nominal

size of the first step is taken to be α1 = 0.5%.

In an empirical analysis we apply our test procedures to the class of anomalies used in Novy-

Marx and Velikov (2016). Not surprisingly, we find that trading costs have no effect when the

risky asset is assumed to be the market portfolio. Nonetheless, trading costs have a significant

effect in terms of utility costs for many anomalies from Novy-Marx and Velikov (2016) in

particular those whose trading costs exceed 1% of the gross return. Thus, it is important not

to ignore such a friction when making investment decisions.

To measure the economic gain of accounting for transaction costs, we use a model with

proportional trading costs and compare the out-of-sample performance in terms of the mean,

SD, SR, and CE. We observe through this analysis that the investor significantly improves

the out-of-sample performance of his portfolio only when a significant trading costs effect is

detected by our test procedure of Section 3.
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Appendix A

Appendix A1: Details on the Euler equations of Section 2

Following Epstein and Zin (1989, 1991) and Chapter 11 of Back (2017), we start by defining

the optimal value of the utility in (1) as a function J of current utility and current information

so that Ut = J (At, Xt). The Bellman equation is given by

J (A,X) = max
C,π
{Cρ + βξρ}

1
ρ (20)

with the certainty equivalent ξ defined by

ξt (x) =
{
E
[
U1−γ
t+1 |Xt = x

]} 1
1−γ

=
{
E
[
J
(
(At − Ct)

(
π′Rt+1 − ft

)
, Xt+1

)1−γ |Xt = x
]} 1

1−γ

where Xt are state variables (variables observed at time t). As it will become evident later,

the value function J is homogeneous in A so that J (A,X) = Ag (X) for some g to determine.

Hence,

ξt (x) = (At − Ct)
{
Et

[
g (Xt+1)1−γ (π′Rt+1 − ft

)1−γ |Xt = x
]} 1

1−γ
.
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Let µt (x) be defined as

µt (x) = max
π

{
E
[
g (Xt+1)1−γ (π′Rt+1 − ft

)1−γ |Xt = x
]} 1

1−γ
. (21)

Dropping the subscript t, we have ξ (x) = (A− C)µ (x) . Substituting this into the Bellman

equation (20), we get

J (A,X) = max
C
{Cρ + β (A− C)ρ µ (X)ρ}

1
ρ .

Let Z be the consumption-to-wealth ratio, Z = C/A, we can rewrite J as

J (A,X) = Amax
Z
{Zρ + β (1− Z)ρ µ (X)ρ}

1
ρ .

This shows that J (A,X) = Ag (X) where

g (X) = max
Z
{Zρ + β (1− Z)ρ µ (X)ρ}

1
ρ . (22)

So J (A,X) = Ag (X) is consistent with the Bellman equation.

The first-order condition for the portfolio optimization (21), under the constraint π′e = 1

with e a N−vector of ones, is given by

(1− γ)Et

[
g (Xt+1)1−γ (π′tRt+1 − ft

)−γ
Rit+1

]
− (1− γ)Et

[
g (Xt+1)1−γ (π′tRt+1 − ft

)−γ ∂ft
∂πit

]
−λt = 0

where λt is the Lagrange multiplier (depending on Xt) and Et denotes the expectation condi-

tional on Xt. This equation holds for all assets i = 1, ..., N including the risk-free asset. This

implies that

Et

[
g (Xt+1)1−γ (π′tRt+1 − ft

)−γ (
Rit+1 −Rft+1

)]
− Et

[
g (Xt+1)1−γ (π′tRt+1 − ft

)−γ ∂ft
∂πit

]
= 0

(23)

given ∂ft
∂π1t

= 0.

To compute the expression of g (Xt+1), we solve (22) and obtain

µ (Xt+1)ρ =
1

β
Zρ−1
t+1 (1− Zt+1)1−ρ (24)
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so that

g (Xt+1) = (Zt+1)(ρ−1)/ρ (25)

(see Back (2017) for details). Hence by Equation (23)

Et

[
(Zt+1)

λ
ρ

(ρ−1) (
π′tRt+1 − ft

)−γ (
Rit+1 −Rft+1

)]
−Et

[
(Zt+1)

λ
ρ

(ρ−1) (
π′tRt+1 − ft

)−γ ∂ft
∂πit

]
= 0

where λ = 1−γ.Now we use Zt+1 = Ct+1/At+1 and the budget constraintAt+1 = (At − Ct) (π′tRt+1 − ft) .

This yields

Et

[
(Ct+1)

λ
ρ

(ρ−1)
(At − Ct)

λ
ρ

(1−ρ) (
π′tRt+1 − ft

)λ
ρ
−1
(
Rit+1 −Rft+1

)]
−Et

[
(Ct+1)

λ
ρ

(ρ−1)
(At − Ct)

λ
ρ

(1−ρ) (
π′tRt+1 − ft

)λ
ρ
−1 ∂ft

∂πit

]
= 0.

As At − Ct belongs to the date t information, we obtain

Et

[
(Ct+1)

λ
ρ

(ρ−1) (
π′tRt+1 − ft

)λ
ρ
−1
(
Rit+1 −Rft+1

)]
−Et

[
(Ct+1)

λ
ρ

(ρ−1) (
π′tRt+1 − ft

)λ
ρ
−1 ∂ft

∂πit

]
= 0.

Now, we divide by (Ct)
λ
ρ

(ρ−1)
which belongs to the date t information:

Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1) (
π′tRt+1 − ft

)λ
ρ
−1
(
Rit+1 −Rft+1

)]

−Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1) (
π′tRt+1 − ft

)λ
ρ
−1 ∂ft

∂πit

]
= 0.

If we denote Rp,t+1 the net return of the optimal portfolio, we observe that

Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Rit+1 −Rft+1

)]
(26)

= Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

∂ft
∂πit

]
≡ δit ≥ 0

where the inequality is strict as soon as ∂ft
∂πit

> 0.
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Now, we are going to show Equation (5) i.e.:

β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ

p,t+1

]
= 1.

From Equations (21) and (25), we have

µ (Xt) =
{
Et

[
g (Xt+1)1−γ (Rp,t+1)1−γ

]} 1
1−γ

=

{
Et

[
Z
λ
ρ

(ρ−1)

t+1 (Rp,t+1)λ
]} 1

λ

using 1− γ = λ. Now replacing Zt+1 by Ct+1/At+1 and using the budget constraint, we obtain

µ (Xt) = (At (1− Zt))
1−ρ
ρ

{
Et

[
C
λ
ρ

(ρ−1)

t+1 (Rp,t+1)
λ
ρ

]} 1
λ

.

Using (24), we have

Zρ−1
t = βµ (Xt)

ρ (1− Zt)ρ−1

= β (At (1− Zt))1−ρ
{
Et

[
C
λ
ρ

(ρ−1)

t+1 (Rp,t+1)
λ
ρ

]} ρ
λ

(1− Zt)ρ−1

= βA1−ρ
t

{
Et

[
C
λ
ρ

(ρ−1)

t+1 (Rp,t+1)
λ
ρ

]} ρ
λ

.

Dividing by A1−ρ
t , we get

Cρ−1
t = β

{
Et

[
C
λ
ρ

(ρ−1)

t+1 (Rp,t+1)
λ
ρ

]} ρ
λ

.

Now raising to the power λ/ρ and dividing by C
λ
ρ

(ρ−1)

t yields

β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ

p,t+1

]
= 1.

So we have proved:

β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ

p,t+1

]
= 1,

−Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Rit+1 −Rft+1

)]
+ δit = 0.

Appendix A2: Proof of Proposition 1

Proposition 1 is a corollary of Lemma 3 below.

Lemma 3. Assume that Assumption A holds and that θ0 is such that δ = 0 and (θ2, θ3, θ4)

are interior points of the parameter space. Then, the following results hold:

1. θ̂ is a consistent estimator of θ0, i.e. θ̂ = θ0 + op (1) .
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2. lT (θ) admits a quadratic expansion in θ given by:

lT (θ) = lT (θ0) +
1

2
X ′TIXT −

1

2
qT

(√
T (θ − θ0)

)
+RT (θ)

where I = Γ
′
S−1Γ, XT = I−1Γ′S−1

√
TGT (θ0) , qT (λ) = (λ−XT )′ I (λ−XT ), λ ∈ R4

and for all γT → 0, supθ∈Θ,‖θ−θ0‖≤γT

[
|RT (θ)|

(1+‖
√
T (θ−θ0)‖)2

]
= op(1).

3. Let Λ = R+ × R3. Let λ̂T = infλ∈Λ qT (λ). Then,
√
T (θ̂ − θ0) = λ̂T + op(1).

4. Let qδ (λδ) = (λδ − Zδ)2 /
(
HI−1H ′

)
where Zδ ∼ N

(
0, HI−1H ′

)
and qδ

(
λ̂δ

)
= infλδ≥0 qδ (λδ).

Then,
√
T δ̂

d→ λ̂δ.

5.
√
T δ̂

d→ λ̂δ = ZδI(Zδ ≥ 0) so that δ̂ has a half-normal asymptotic distribution.

Proof of Lemma 3

1. Proof of consistency: As g (Zt, θ) is continuous in θ and Θ is compact, the minimum θ̂

exists. Moreover, {g (Zt, θ0)} is continuous in Zt and hence is stationary ergodic by Assumption

A1. GT (θ) satisfies a uniform law of large numbers by Assumption A4(i) (see for instance

Hayashi (2000)). Therefore, θ̂ is a consistent estimator of θ0.

2. We need to check the conditions GMM1*, GMM2, and GMM3 of Andrews (1997).

GMM1*:

GMM1*(a) requires that GMM1(a), GMM1(C), and GMM1(e) hold. GMM1(a) holds be-

cause GT (θ) satisfies the law of large numbers, hence GT (θ)
P→ G (θ) .

GMM1(c), namely G (θ0) = 0, is satisfied by Assumption A3.

GMM1(e) follows from the fact that Ŝ does not depend on θ and Ŝ is a consistent estimator

of S by Assumption A5.

GMM1*(b) and (c) hold because the domain of G (θ) includes a set Θ+ that satisfies condi-

tions (i) and (ii) of Assumption 1*(a). Moreover, each element of the K vector valued function

GT (θ) has continuous right derivatives of order one on Θ+ with probability 1.

GMM1*(d) holds because ∂GT (θ) /∂θ converges in probability to ∂G (θ) /∂θ uniformly in

θ on N by Assumption A4(ii).

GMM1∗(e) holds because under Assumption A, ∂GT (θ0) /∂θ′
P→ ∂G (θ0) /∂θ′ = Γ.

GMM2:
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Because {g (Zt, θ0)} is a martingale difference sequence (see Equations (??) and (??)) and

the existence of S, we have a central limit theorem:

√
TGT (θ0)

d→ N (0, S) ,

hence
√
TGT (θ0) = Op (1) and GMM2 holds.

GMM3 is the same as our assumption A6.

By Theorem 7 of Andrews (1997), the expansion of lT (θ) given in point 2 holds.

3. Point 3 follows from Theorem 3(a) of Andrews (1999). We need to check Assumptions 2

to 6 of Andrews (1999). By Theorem 7 of Andrews (1997), Assumptions GMM1, GMM2, and

GMM3 imply Assumptions 1-3 of Andrews (1999). Assumption 4 (consistency) of Andrews

(1999) follows from the point 1. Assumption 5 of Andrews (1999) holds with BT = bT =
√
T

and Λ = R+ × R3. Assumption 6 of Andrews (1999) holds because the cone Λ is convex.

4. Point 4 follows from Theorem 4 and Corollary 1 of Andrews (1999).

5. Point 5 follows from the minimization of qδ (λ) .

Appendix A3: Proof of Proposition 2

If δ = 0,

P [{W > cα1} ∩ {J > c1α2} |H0] ≤ P [W > cα1 |H0] ≤ α1.

If δ > 0,

P [{W > cα1} ∩ {J > c1α2} |H0] ≤ P [J > c1α2 |H0] ≤ α2.

Hence, for δ ≥ 0, we have

P [{W > cα1} ∩ {J > c1α2} |H0] ≤ max(α1, α2).

Moreover, for δ ≥ 0,

P [{W ≤ cα1} ∩ {J > c2α3} |H0] ≤ P [J > c2α3 |H0] ≤ α3

because c2α3 > c1α3 so that the J test based on c2α3 has a size smaller than α3 even when δ > 0.
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In summary, we obtain

P [reject H0|H0] ≤ P [{W > cα1} ∩ {J > c1α2} |H0]

+P [{W ≤ cα1} ∩ {J > c2α3} |H0]

≤ max(α1, α2) + α3.

This completes the proof of Proposition 2.

Appendix A4: Algorithm to simulate the critical value of 0.5χ2(K − L) +

0.5χ2(K − L+ 1)

Let us denote by B the number of simulations. K is the number of moment conditions and L

the number of estimated parameters.

- Initialize a vector J of size B: J = zeros(1, B),

- Then, at each simulation step b = 1, ..., B, generate a uniform random variable x ∈ (0, 1)

(with Maltab x = rand),

- if x > 0.5 then generate J(b) from a χ2(K − L+ 1) otherwise, J(b) is from a χ2(K − L).

- Repeat this process for b = 1 to B.

- The critical value of 0.5χ2(K−L)+0.5χ2(K−L+1) at the significant level α% is obtained

using the (100− α)% percentile of J (with Matlab Jcritic = prctile(J, 100− α)).

Appendix A5: Calibrated parameters for the simulations of Section 4.3

The parameters used in the simulations are chosen to match the estimates obtained by least-

squares using the actual time series from July 1973 to December 2013.

Market portfolio as anomaly

The marginal distribution of Yt in this case is the following:
Xt

r1,t

r2,t

 ∼ N



.0008754

.0042422

.0109538

 ,


.000015 −2.4e− 06 .000033

−2.4e− 06 .000015 6.2e− 06

.000033 6.2e− 06 .002319




The other parameters are calibrated as follows
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a =


0.0015

0

0.087

, B =


0 0 0.009

0 0.823 0

0 7.83 0

, C =


0 0 0.006

0 0.165 0.0031

−1.180 −7.597 0

, Diag(Σε) =

(0.852, 0.708, 0.861).

Seasonality as anomaly

The marginal distribution of Yt in this case is the following:
Xt

r1,t

r2,t

 ∼ N



.0008754

.0042422

.0072585

 ,


.000015 −2.4e− 06 −9.4e− 07

−2.4e− 06 .000015 9.8e− 06

−9.4e− 07 9.8e− 06 .001483




The other parameters are calibrated as follows

a =


0.0015

0

0

, B =


0 −0.436 0

0 0.8368 0

0 3.777 0.0908

, C =


0.0911 0 0

0.01885 0.15216 0.00169

0 0 0.0928

, Diag(Σε) =

(0.862, 0.778, 0.890).

Appendix A6: Justification of Equation (17)

Computation of β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)
R
λ
ρ
−1

p,t+1Ri,t+1

]
:

From (26), we have for all i = 1, 2, ..., N :

Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Ri,t+1 −Rft+1

)]
= δit (27)

where δit = Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)
R
λ
ρ
−1

p,t+1
∂ft
∂πit

]
≥ 0.

Multiplying by πit on the left and on the right and taking the sum over i yields

Et

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
π′Rt+1 −Rft+1

)]
=

N∑
i=1

πitδit
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because
∑N

i=1 πitR
f
t+1 = Rft+1

∑N
i=1 πit = Rft+1. We obtain

β
λ
ρ

N∑
i=1

πitδit

= β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
π′Rt+1 − ft −

(
Rft+1 − ft

))]

= β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ

p,t+1

]
− β

λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Rft+1 − ft

)]

= 1− β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Rft+1 − ft

)]
.

Using Equation (27), we have

β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1 (Ri,t+1 − ft)

]
= β

λ
ρ δit + β

λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1

(
Rft+1 − ft

)]

= 1 + β
λ
ρ

δit − N∑
j=1

πjtδjt

 .

Hence

β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1Ri,t+1

]
= 1 + β

λ
ρ

δit − N∑
j=1

πjtδjt

+ β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)

R
λ
ρ
−1

p,t+1ft

]
≡ 1 + χi,t.

If there is no transaction cost, we obtain the usual equilibrium condition β
λ
ρEt

[(
Ct+1

Ct

)λ
ρ

(ρ−1)
R
λ
ρ
−1

p,t+1Ri,t+1

]
=

1. But in presence of transaction costs, the term χi,t may be positive or negative depending on

δit and δjt for j 6= i which themselves depend on ∂ft
∂πit

and ∂ft
∂πjt

.

Appendix A7: The numerical procedure for the results of Section 6

The results of Section 6 are obtained by solving the investor’s optimization problem numerically

in the spirit of Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000).

The optimization problem

We consider the following recursive utility function

Ut =

[
(1− β)Cρt + β

(
Et

(
U1−γ
t+1

)) ρ
1−γ
] 1
ρ

. (28)

The agent lives a finite number of periods T . Epstein and Zin (1989, 1991) show that the Bell-

man equations that solve the consumption-investment optimization problem takes the following
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form

J(At, Xt) = max
Ct≥0,πt∈[0,1]

{
(1− β)Cρt + β

[
EtJ(At+1, Xt+1)1−γ] ρ

1−γ
} 1
ρ

where Xt = (Rt, Dt) is a vector of state variables with Dt the dividend yield and J(At, Xt) the

value function of the optimization problem.

Moreover, Garlappi and Skoulakis (2010) show that, under the homothetic recursive pref-

erences, the value function that solves (28) is given by

J(At, Xt) = V (Xt)At

where

V (Xt) =

1 +

[
β

(
min
yt∈[0,1]

Et

[(
πtRt+1 + (1− πt)Rft+1

)1−γ
V (Xt+1)1−γ

]) ρ
1−γ
] 1

1−ρ


1−ρ
ρ

(29)

with the terminal condition

V (XT ) = 1 (30)

and the optimal consumption-to-wealth ratio is given by Ct/At = V (Xt)
−ρ/(1−ρ). Such a decom-

position of the value function of the consumption-investment problem proves that the portfolio

and consumption problems can be solved separately and makes the numerical resolution easier

to implement. The system (29) and (30), which is only about optimal portfolio selection, is

the one we are interested in and will be solved by backward iteration. The resolution of this

system will help us to obtain optimal risky asset allocation over time {πt}. Nonetheless to well

implement this procedure, we first need to compute a discrete approximation of some variables

whose distributions are assumed to be continuous.

Discrete approximation of the set of state variables

We need to discretize all the state variables in this optimization problem. Let us consider a

simple case where the proportion of the portfolio in the risky asset πt is in [0, 1] for t = 1, ..., T ,

this rules out short-selling. We need to discretize this set into a grid of points. As in Balduzzi

and Lynch (1999) and Lynch and Balduzzi (2000), the following grid of points on the interval

[0,1] will be used: {0.00, 0.02, 0.04, ..., 0.96, 0.98, 1.00} so that we obtain 50 discrete points for

this variable.

Let dt = log(1 + Dt), rt = log(1 + Rt) with Dt the dividend yield and Rt the risky asset
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return. We assume that the vector of state variables Xt = (rt, dt)
′

follows a VAR model:

Xt+1 = b+AXt + εt+1

where b = (b1, b2)
′
, εt = (e1t, e2t)

′ ∼ iid N (0,Σ), and A =

a11 a12

a21 a22

. We also assume that

dt is the only state variable in the VAR model which means that aj1 = 0, j = 1, 2. This last

assumption about the investment opportunity set implies that the dividend yield is sufficient

to well predict the risky-asset return (Fama and French (1988), Balduzzi and Lynch (1999) and

Lynch and Balduzzi (2000)). Hence, the VAR model becomes: rt+1 = b1 + a12dt + e1,t+1

dt+1 = b2 + a22dt + e2,t+1

and this model will be estimated by OLS using data from U.S financial market.

But, since dt depends on asset prices at the end of period t, the value of that regressor at the

end of period t+1 reflects changes in asset prices during t+1 as does rt+1 so E (e1,t+1|dt+1, dt) 6=

0 (see Stambaugh (1999)). Consequently, OLS estimators of coefficients of the first equation in

the VAR model although consistent are biased and have sampling distributions that differ from

those in the standard setting. Stambaugh (1999) shows that this bias is given by:

E (â12 − a12) =
σe1e2
σ2
e2

E (â22 − a22) .

It is a positive bias since the bias in â22 is negative and that the unexpected return e1,t+1 is

negatively correlated with the innovation in the dividend yield e2,t+1. Empirically the value

of
σe1e2
σ2
e2

is in the order of 10 to 20 so that the magnitude of the positive bias in â12 is many

times the negative bias in â22. A bias-corrected OLS estimator has been proposed in the

literature in particular by Stambaugh (1999) using a Bayesian approach. However, Lewellen

(2004) shows that this correction can substantially understate, in some circumstances, dividend

yield’s predictive ability since this approach implicitly discards any information we have about

â22 − a22. Hence, using the fact that the slope in a predictive regression is strongly correlated

with the dividend yield’s auto-correlation, Lewellen (2004) proposes the following bias-adjusted

estimator:

â12adj = â12 −
σe1e2
σ2
e2

(â22 − a22) .
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Because the dividend yield is a persistent variable, even if we do not know â22 − a22, a lower

bound can be obtained using a22 ≈ 1 which gives us an upper bound on the bias in â12.

Based on those estimates, the following procedure is used to have a discrete approximation

for Xt. First, the dividend yield is discretized as a first order autoregressive process (Tauchen

and Hussey, 1991) to obtain a discrete process of nineteen points. For the return on the risky

asset, we use the fact that the VAR model implies the following expression for the stock returns:

rt+1 = b1 + a12dt + νe2,t+1 + ut+1

where ν is the regression coefficient from regressing e1 on e2 and ut is an i.i.d. normally

distributed random variable with 0 mean and unknown variance σ2
u, and assumed to be uncor-

related with e2. The quadrature method is used to have a discrete distribution for ut (with

three points) calibrating σ2
u by an estimator which is given by:

σ̂2
u =

1

T − 1

T∑
t=1

ût
2 =

1

T − 1

T∑
t=1

(ê1t − ν̂ê2t)
2 .

Then, we can have a discrete distribution for rt+1 for each {dt, dt+1} since e2,t+1 = dt+1 − b2 −

a22dt, so rt+1 = b1 + a12dt + ν (dt+1 − b2 − a22dt) + ut+1. Hence, we obtain a discrete process

for the asset return distribution with 19× 19× 3 = 1083 which will be used to implement our

numerical procedure. More details about this numerical method can be found in Balduzzi and

Lynch (1999) and Lynch and Balduzzi (2000).

The estimation is done using data from the Federal Reserve Bank of St. Louis database.

The VAR model gives us the results reported in Table 9.

Table 9: The VAR model estimation results

Estimation results a. b. Adjusted R2

rt+1
0.3191

(0.0719)
-0.0240
(0.0082)

0.025

dt+1
0.9951

(0.0025)
3.88e-4

(2.87e-4)
0.9925

The result from regressing e1 on e2 provides ν̂ = −11.9831 with a standard error of 0.9298

and the unknown variance σ2
u is calibrated by σ̂2

u so that we obtain 0.0064. The ratio
σe1e2
σ2
e2

is

calibrated to be −11.98 using data so that the bias-adjusted estimator â12adj is equal to 0.2607.
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We can now compute the investor’s optimal investment strategy by solving the optimization

problem for some values of the preference parameters and transaction costs parameter.

Appendix B

Table 10: The list of some anomalies and their average transaction costs

Anomalies Average trading costs (%)

Size 0.04
Gross Profitability 0.03

Asset growth 0.11
Piotroski’s F-score 0.11

PEAD (SUE) 0.46
Industry Momentum 1.22

Industry Relative Reversals 1.78
High Frequency Combo 1.45

Short-run reversals 1.65
Seasonality 1.46

Industry Relative Reversal
(Low volatility)

1.06

Source: from Novy-Marx and Velikov (2016)

Table 11: Critical values for Proposition 1 with several significant levels

Significant
level (%)

0.5 1.5 2 2.5 3 3.5 4 4.5 4.7 6

Critical
value

6.6262 4.709 4.223 3.844 3.545 3.292 3.068 2.878 2.8042 2.416

48



Table 12: GMM estimation result for testing trading costs effect

Strategies
Nondurable goods (l = 1)

Nondurable goods and
services (l = 1)

δ̂ when
ignoring

trading costs

δ̂ using
net return

δ̂ when
ignoring

trading costs

δ̂ using
net return

Market Portfolio
2.2654e-13

(3.1261e-21)
1.3501e-15

(1.1094e-25)
5.4916e-07

(1.6523e-08)
1.0443e-12

(5.9711e-20)

Size
6.9847e-14
(3.131e-22)

2.0541e-13
(2.7094e-21)

3.4502e-12
(7.4954e-19)

1.9774e-12
(2.463e-19)

Gross Profitability
0.0051894

(1.83)
1.8976e-12

(3.7851e-19)
0.0052601
(2.1425)

1.0116e-14
(1.0767e-23)

Asset growth
0.0031434
(1.3803)

0.0013313
(0.243)

0.0028477
(1.117)

0.0010533
(0.15017)

Piotroski’s F-score
2.5866e-12

(4.9004e-19)
9.5376e-15

(5.5044e-24)
4.0185e-13
(1.137e-20)

3.3069e-14
(6.108e-23)

PEAD (SUE)
0.0053384
(3.8415)

8.7665e-15
(9.2474e-24)

0.0050778
(3.4721)

3.6103e-13
(1.5975e-20)

Industry Momentum
0.0070531
(2.6406)

1.528e-14
(4.5482e-24)

0.0063792
(2.141)

1.0618e-13
(2.4837e-22)

Industry Relative Reversals
0.0080942∗

(6.7613)
2.0041e-16

(4.0927e-27)
0.0084922∗

(7.3318)
1.0369e-14

(1.0642e-23)

High Frequency Combo
0.018521∗

(46.3551)
2.1941e-14

(7.2856e-23)
0.018542∗

(46.406)
6.391e-13

(6.1573e-20)

Short-run reversals
0.007054
(5.2429)

3.5135e-12
(7.2305e-19)

0.0070933
(5.3038)

1.0795e-15
(6.6301e-26)

Seasonality
0.0057033
(3.9234)

3.8865e-13
(1.73e-20)

0.0058048
(4.0456)

3.2126e-13
(1.171e-20)

Industry Relative Reversals
(Low volatility)

0.011044∗

(18.9917)
1.1367e-13

(2.1763e-21)
0.011407∗

(19.9699)
2.1231e-13

(7.3831e-21)

∗ significant at 0.5%

Quantities in brackets are Wald statistics.
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Table 13: GMM estimation result for testing trading costs effect

Nondurable goods (l = 3)

Strategy
Ignoring transaction costs Using the net return

δ̂ J test δ̂ J test

Market Portfolio
0.0019965
(0.32225)

17.21+

(13.6907)

0.002
(0.32314)

17.2+

(13.6907)

Size
3.043e-10

(7.7982e-15)
30.57+

(13.6907)

2.322e-11
(4.5396e-17)

31.13+

(13.6907)

Gross Profitability
0.0041313∗

(1.654)
9.379

(13.6907)
5.7123e-14

(4.0912e-22)
11.82

(13.6907)

Asset growth
0.0013815
(0.29178)

9.528
(13.6907)

8.4173e-13
(1.0602e-19)

9.448
(10.6296)

Piotroski’s F-score
8.4388e-12

(5.9809e-18)
21.23+

(13.6907)

6.8836e-14
(3.7744e-22)

23.16+

(13.6907)

PEAD (SUE)
0.0043606∗∗

(2.9513)
8.946

(13.6907)
3.3995e-15

(1.7727e-24)
11.9

(13.6907)

Industry Momentum
0.0081276∗∗

(4.6864)
5.45

(13.6907)
1.9478e-14

(81.5528e-23)
12.13

(13.6907)

Industry Relative Reversals
0.0085466∗∗∗

(8.1571)
11.95

(18.5476)
1.5296e-13

(2.5825e-21)
69.08+

(13.6907)

High Frequency Combo
0.016968∗∗∗

(39.8334)
8.249

(18.5476)
2.4454e-11

(9.2207e-17)
13.02

(13.6907)

Short-run reversals
0.0076019∗∗∗

(6.6495)
10.73

(13.6907)
1.2961e-12

(1.0962e-19)
13.09

(13.6907)

Seasonality
0.0065325∗∗∗

(5.4339)
13.34

(13.6907)
6.5664e-13

(5.3497e-20)
11.17

(13.6907)

Industry Relative Reversals
(Low volatility)

0.011173∗∗∗

(21.3514)
9.319

(18.5476)
2.6106e-12

(1.2818e-18)
17.05+

(13.6907)

∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at α2 or α3.

Quantities in brackets under δ̂ are Wald statistics. Quantities in brackets for J-test are critical values.
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Table 14: GMM estimation result for testing trading costs effect

Nondurable goods and services (l = 3)

Strategy
Ignoring transaction costs Using the net return

δ̂ J test δ̂ J test

Market Portfolio
0.0020385
(0.32166)

16.3+

(13.6907)

0.0020417
(0.3224)

18.31+

(13.6907)

Size
7.4011e-11

(4.5476e-16)
30.23+

(13.6907)

7.4833e-15
(4.6484e-24)

30.85+

(13.6907)

Gross Profitability
0.0038572∗

(1.9583)
10.11

(13.6907)
1.7477e-12
(4.601e-19)

10.74
(13.6907)

Asset growth
0.0013811
(0.29289)

11.1
(13.6907)

1.9352e-11
(5.6321e-17)

10.85
(13.6907)

Piotroski’s F-score
7.3712e-12

(4.2405e-18)
24.02+

(13.6907)

2.9492e-13
(7.266e-21)

22.44+

(13.6907)

PEAD (SUE)
0.0044463∗∗

(2.9503)
11.86

(13.6907)
4.8047e-15

(3.4342e-24)
13.53

(13.6907)

Industry Momentum
0.0081609∗∗

(4.8824)
6.822

(13.6907)
3.2616e-13

(4.7615e-21)
6.925

(13.6907)

Industry Relative Reversals
0.0086798∗∗∗

(8.1602)
9.439

(18.5476)
4.0154e-13

(1.7257e-20)
64.02+

(13.6907)

High Frequency Combo
0.016982∗∗∗

(40.0846)
10.81

(18.5476)
1.9665e-12

(5.9376e-19)
18.89+

(13.6907)

Short-run reversals
0.0073319∗∗∗

(6.0363)
9.835

(13.6907)
5.7702e-13

(2.1042e-20)
12.84

(13.6907)

Seasonality
0.0064548∗∗

(5.1925)
13.48

(13.6907)
4.9029e-13

(2.9017e-20)
11.99

(13.6907)

Industry Relative Reversals
(Low volatility)

0.011334∗∗∗

(21.1403)
11.1

(18.5476)
1.7726e-12

(5.6269e-19)
18.83+

(13.6907)

∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at α2 or α3.

Quantities in brackets under δ̂ are Wald statistics. Quantities in brackets for J-test are critical values.
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Table 15: Estimates of the other parameters for each strategy with l = 2

Estimates parameters
Nondurable goods and services Nondurable goods
Ign TC Net return Ign TC Net return

Market portfolio

β̂
0.9915

(0.00321)
0.9928

(0.00256)
0.9932

(0.00282)
0.9931

(0.00247)

λ̂
0.0467

(0.1258)
-0.0487
(0.0241)

-0.0528
(0.0078)

-0.0496
(0.0087)

ρ̂
-0.4861
(0.4858)

-0.4878
(0.0988)

-0.3889
(0.0835)

-0.3871
(0.0896)

Size

β̂
0.9930

(0.00325)
0.9934

(0.00356)
0.9937

(0.00376)
0.9933

(0.00576)

λ̂
-0.0471
(0.0112)

-0.0431
(0.0214)

-0.0534
(0.0068)

-0.0487
(0.0058)

ρ̂
-0.4786
(0.2180)

-0.4835
(0.1076)

-0.3568
(0.0983)

-0.3865
(0.1024)

Gross profitability

β̂
0.9861

(0.03207)
0.9965

(0.03452)
0.9925

(0.0209)
0.9893

(0.0298)

λ̂
-0.0436
(0.0135)

-0.0514
(0.0143)

-0.0467
(0.0087)

-0.0386
(0.0067)

ρ̂
-0.4432
(0.0932)

-0.4548
(0.0986)

-0.4675
(0.1092)

-0.4322
(0.1109)

Asset growth

β̂
0.9862

(0.0173)
0.9943

(0.0192)
0.997

(0.0121)
0.9812

(0.0120)

λ̂
-0.0603
(0.0062)

-0.0497
(0.0054)

-0.0382
(0.0048)

-0.0427
(0.0082)

ρ̂
-0.4231
(0.2461)

-0.4329
(0.2365)

-0.4271
(0.2273)

-0.3877
(0.2531)
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Table 16: Estimates of the other parameters for each strategy with l = 2

Estimates parameters
Nondurable goods and services Nondurable goods
Ign TC Net return Ign TC Net return

Piotroski’s F-score

β̂
0.9859

(0.0091)
0.9891

(0.0081)
0.9814

(0.0057)
0.9785

(0.0078)

λ̂
-0.0425
(0.0048)

-0.0324
(0.0214)

-0.0384
(0.0081)

-0.0452
(0.0103)

ρ̂
-0.4841
(0.0847)

-0.4842
(0.0841)

-0.4678
(0.0884)

-0.4354
(0.0687)

PEAD (SUE)

β̂
0.9934

(0.0245)
0.9905

(0.0184)
0.9842

(0.0457)
0.9851

(0.0125)

λ̂
-0.0642
(0.0124)

-0.0641
(0.0147)

-0.0482
(0.0148)

-0.0485
(0.0461)

ρ̂
-0.3241
(0.0458)

-0.3354
(0.0358)

-0.3842
(0.0654)

-0.4057
(0.0587)

Industry Momentum

β̂
0.9915

(0.00984)
0.9926

(0.00781)
0.9905

(0.00824)
0.9891

(0.00847)

λ̂
-0.0486

(0.00914)
-0.0541
(0.0764)

-0.0469
(0.00841)

-0.0572
(0.00481)

ρ̂
-0.4347
(0.0841)

-0.4547
(0.0898)

-0.4421
(0.0845)

-0.4347
(0.0874)

Industry Relative Reversals

β̂
0.9847

(0.0214)
0.9875

(0.0145)
0.9879

(0.0128)
0.9894

(0.0145)

λ̂
-0.0486
(0.0124)

-0.0478
(0.0114)

-0.0567
(0.0087)

-0.0478
(0.0012)

ρ̂
-0.4458
(0.0684)

-0.4345
(0.0758)

-0.3974
(0.0974)

-0.4125
(0.0678)
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Table 17: Estimates of the other parameters for each strategy with l = 2

Estimates parameters
Nondurable goods and services Nondurable goods
Ign TC Net return Ign TC Net return

High Frequency Combo

β̂
0.9871

(0.0178)
0.9879

(0.0096)
0.9912

(0.0084)
0.9941

(0.0129)

λ̂
-0.0489
(0.0125)

-0.0469
(0.0214)

-0.0562
(0.0086)

-0.0473
(0.0072)

ρ̂
-0.4541
(0.1247)

-0.4624
(0.1854)

-0.4735
(0.1281)

-0.4821
(0.1204)

Short-run reversals

β̂
0.9934

(0.0214)
0.9934

(0.0157)
0.9874

(0.0148)
0.9881

(0.0074)

λ̂
-0.0463
(0.0104)

-0.0574
(0.0142)

-0.0495
(0.0065)

-0.0457
(0.0054)

ρ̂
-0.4641
(0.0985)

-0.4366
(0.0845)

-0.4741
(0.1304)

-0.4689
(0.1256)

Seasonality

β̂
0.9824

(0.0248)
0.9891

(0.0341)
0.9864

(0.0214)
0.9920

(0.0126)

λ̂
-0.0475
(0.0079)

-0.0498
(0.0084)

-0.0486
(0.0086)

-0.0521
(0.0092)

ρ̂
-0.4462
(0.0895)

-0.4325
(0.1247)

-0.4681
(0.2140)

-0.4638
(0.1354)

Industry Relative Reversals
(Low volatility)

β̂
0.9921

(0.0214)
0.9869

(0.0177)
0.9894

(0.0198)
0.9921

(0.0214)

λ̂
-0.0482
(0.0081)

-0.0514
(0.0084)

-0.0498
(0.0092)

-0.0476
(0.0089)

ρ̂
-0.4461
(0.2161)

-0.4365
(0.2140)

-0.4624
(0.1841)

-0.4471
(0.1242)
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Table 18: GMM estimation using funding liquidity

Nondurable goods (l = 2)

Strategy
Ignoring transaction costs Using the net return

δ̂0 J test δ̂0 J test

Market Portfolio
0.0026014
(1.5642)

3.86
(10.6456)

0.0026033
(1.5652)

3.90
(10.6456)

Size
3.1805e-12

(2.5038e-18)
4.419

(10.6456)
2.9534e-12
(.1659e-18)

4.783
(10.6456)

Gross Profitability
0.0019876∗

(1.9112)
5.199

(10.6456)
0.0016569
(1.4441)

5.238
(10.6456)

Asset growth
0.001093446
(0.13452 )

15.25+

(10.6456)

6.6892e-12
(1.702e-17)

14.84+

(10.6456)

Piotroski’s F-score
0.000728
(0.02746)

10.4
(10.6456)

1.1505e-12
(2.6328e-19)

10.01
(10.6456)

PEAD (SUE)
0.0052671∗∗

(3.2158)
7.133

(10.6456)
4.3605e-13

(1.0508e-19)
8.117

(10.6456)

Industry Momentum
0.00616245∗∗∗

(15.301)
5.2

(10.6456)
7.8236e-15

(6.1186e-24)
6.01

(10.6456)

Industry Relative Reversals
0.0153054∗∗

(3.6595)
10.21

(10.6456)
8.4862e-16

(2.0203e-25)
81.88+

(10.6456)

High Frequency Combo
0.01858537∗∗∗

(7.1574)
4.232

(14.8603)
3.8273e-13

(5.4398e-20)
25.16+

(10.6456)

Short-run reversals
0.0147094∗∗

(3.6595)
10.20

(10.6456)
1.441e-13

(3.4639e-21)
53.89+

(10.6456)

Seasonality
0.01404974∗∗∗

(8.6212)
10.94

(14.8603)
1.469e-12

(7.5078e-19)
10.29

(10.6456)

Industry Relative Reversals
(Low volatility)

0.01162806∗∗

(3.0828)
6.35

(10.6456)
5.7774e-13

(1.9295e-19)
30.14+

(10.6456)

∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at α2 or α3.

Quantities in brackets under δ̂ are Wald statistics. Quantities in brackets for J-test are critical values.

55



Table 19: GMM estimation using funding liquidity (continued)

Nondurable goods and services (l = 2)

Strategy
Ignoring transaction costs Using the net return

δ̂0 J test δ̂0 J test

Market Portfolio
0.0028
(.7618)

14.75+

(10.6456)

0.002802
(0.7629)

14.70+

(10.6456)

Size
3.1097e-12

(2.3694e-18)
8.82

(10.6456)
9.6813e-13

(2.3037e-19)
29.33+

(10.6456)

Gross Profitability
0.00108691∗∗

(2.197)
7.326

(10.6456)
0.0017938
(0.6882)

7.287
(10.6456)

Asset growth
0.00109277
(0.22884)

13.39+

(10.6456)

2.8262e-13
(2.994e-20)

12.9+

(10.6456)

Piotroski’s F-score
0.00149102
(0.02738)

9.684
(10.6456)

1.6559e-12
(5.1691e-19)

10.03
(10.6456)

PEAD (SUE)
0.00467096∗∗

(2.8838)
7.83

(10.6456)
1.0013e-12

(5.6239e-19)
7.939

(10.6456)

Industry Momentum
0.00864577∗∗

(4.4428)
9.8

(10.6456)
4.9729e-17

(2.5394e-28)
9.09

(10.6456)

Industry Relative Reversals
0.015900775∗∗∗

(7.2246)
7.19

(10.6456)
1.4926e-12

(8.3288e-19)
6.2

(10.6456)

High Frequency Combo
0.016894847∗∗∗

(6.6839)
5.76

(14.8603)
1.4926e-12

(8.3288e-19)
26.2+

(10.6456)

Short-run reversals
0.014410716∗∗

(3.9037)
10.60

(10.6456)
3.072e-12

(1.5854e-18)
54.15+

(10.6456)

Seasonality
0.01291932∗∗∗

(8.4735)
12.04

(14.8603)
5.4635e-13

(1.0416e-19)
4.5

(10.6456)

Industry Relative Reversals
(Low volatility)

0.01192563∗∗

(3.2013)
6.65

(10.6456)
4.9797e-13

(1.4104e-19)
28.63+

(10.6456)

∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at α2 or α3.

Quantities in brackets under δ̂ are Wald statistics. Quantities in brackets for J-test are critical values.
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Table 20: GMM estimation result for testing trading costs effect (with Liquidity)

Strategies
Nondurable goods (l = 1)

Nondurable goods and
services (l = 1)

δ̂ when
ignoring

trading costs

δ̂ using
net return

δ̂ when
ignoring

trading costs

δ̂ using
net return

Market Portfolio
0.0021491
(0.95185)

0.0021488
(0.95081)

0.001979
(0.76525)

0.0019807
(0.76595)

Size
5.6035e-13

(7.5891e-20)
1.2629e-13

(3.8651e-21)
1.056e-13

(2.6676e-21)
6.3367e-15

(9.6292e-24)

Gross Profitability
0.002022
(1.9969)

0.0018445
(0.7552)

0.0021
(2.2693)

0.0018501
(0.7658)

Asset growth
0.00065638
(0.16537)

7.775e-12
(2.2263e-17)

0.00070403
(0.18983)

1.829e-12
(1.2309e-18)

Piotroski’s F-score
2.4803e-11

(1.2303e-16)
6.7735e-13

(8.5046e-20)
1.5343e-11

(4.6579e-17)
4.4674e-13

(3.6409e-20)

PEAD (SUE)
0.0023024
(3.0912)

1.1207e-13
(6.7851e-21)

0.0022869
(3.0557)

8.6253e-15
(4.0806e-23)

Industry Momentum
0.0010974
(1.6733)

1.9662e-15
(3.2966e-25)

0.0011491
(1.8304)

1.6296e-16
(2.2812e-27)

Industry Relative Reversals
0.00087166

(2.3597)
6.2063e-15

(1.0111e-23)
0.00088344

(2.4232)
1.2209e-13

(3.9201e-21)

High Frequency Combo
0.0041909∗

(6.6955)
5.0427e-13

(9.2562e-20)
0.0041527∗

(6.7288)
7.1962e-13

(1.8862e-19)

Short-run reversals
0.0032083
(3.8957)

1.199e-16
(2.2498e-27)

0.0032567
(3.9874)

2.0668e-13
(6.6829e-21)

Seasonality
0.0051043∗

(9.0313)
5.7992e-14
(1.167e-21)

0.0050793∗

(8.9498)
4.2068e-14
(6.184e-22)

Industry Relative Reversals
(Low volatility)

0.0027972
(4.3509)

2.2081e-14
(2.6591e-22)

0.0027396
(4.1648)

8.0224e-15
(3.5034e-23)

∗ significant at 0.5%

Quantities in brackets are Wald statistics.
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Table 21: Comparison of trading costs (in percentage)

Anomalies
Average transaction cost by

Novy-Marx and Velikov (2016)
Our estimated trading costs

Nondurable goods
Nondurable goods

and services

Size 0.04 0.00 0.00
Gross Profitability 0.03 0.20 0.21

Asset growth 0.11 0.11 0.11
Piotroski’s F-score 0.11 0.07 0.15

PEAD (SUE) 0.46 0.53 0.47
Industry momentum 1.12 0.62 0.87

Industry relative reversals 1.78 1.54 1.60
High-frequency combo 1.45 1.87 1.70

Short-run reversals 1.65 1.48 1.40
Seasonality 1.46 1.41 1.30

Industry relative reversals
(Low volatility)

1.06 1.17 1.20
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