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Abstract/Résumé 
 
Background: Public health efforts to determine population infection rates from coronavirus 
disease 2019 (COVID-19) have been hampered by limitations in testing capabilities and the large 
shares of mild and asymptomatic cases. We developed a methodology that corrects observed 
positive test rates for non-random sampling to estimate population infection rates across U.S. 
states from March 31 to April 7.  
Methods: We adapted a sample selection model that corrects for non-random testing to estimate 
population infection rates. The methodology compares how the observed positive case rate vary 
with changes in the size of the tested population, and applies this gradient to infer total 
population infection rates. Model identification requires that variation in testing rates be 
uncorrelated with changes in underlying disease prevalence. To this end, we relied on data on 
day-to-day changes in completed tests across U.S. states for the period March 31 to April 7, 
which were primarily influenced by immediate supply-side constraints. We used this 
methodology to construct predicted infection rates across each state over the sample period. We 
also assessed the sensitivity of the results to controls for state-specific daily trends in infection 
rates.  
Results: The median population infection rate over the period March 31 to April 7 was 0.9% 
(IQR 0.64 1.77). The three states with the highest prevalence over the sample period were New 
York (8.5%), New Jersey (7.6%), and Louisiana (6.7%). Estimates from models that control for 
state-specific daily trends in infection rates were virtually identical to the baseline findings.  The 
estimates imply a nationwide average of 12 population infections per diagnosed case. We found 
a negative bivariate relationship (corr. = -0.51) between total per capita state testing and the ratio 
of population infections per diagnosed case.  
Interpretation: The effectiveness of the public health response to the coronavirus pandemic will 
depend on timely information on infection rates across different regions. With increasingly 
available high frequency data on COVID-19 testing, our methodology could be used to estimate 
population infection rates for a range of countries and subnational districts. In the United States, 
we found widespread undiagnosed COVID-19 infection. Expansion of rapid diagnostic and 
serological testing will be critical in preventing recurrent unobserved community transmission 
and identifying the large numbers individuals who may have some level of viral immunity. 
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1. Introduction 

 Our understanding of the progression and severity of the ongoing coronavirus disease 2019 

(COVID-19) pandemic has been limited by constraints on testing capabilities. In most countries, 

testing has been limited to a small fraction of the population. As a result, the number of 

confirmed positive cases may grossly understate the population infection rate, given the large 

numbers of mild and asymptomatic cases that may go untested [1-5]. Moreover, testing has often 

been targeted to specific subgroups, such as individuals who were symptomatic or who were 

previously exposed to the virus, whose infection probability differs from that in the overall 

population [6,7].1 Given this sample selection bias, it is impossible to infer overall disease 

prevalence from the share of positive cases among the tested individuals. 

 A further challenge to our understanding of the spread of outbreak has been the wide 

variation in per capita testing across jurisdictions due to different protocols and testing 

capabilities. For example, as of April 7, South Korea had conducted three times more tests than 

the United States on a per capita basis [8,9]. Large differences in testing rates also exist at the 

subnational level. For example, per capita testing in the state of New York was nearly two times 

higher than in neighboring New Jersey [8]. Because the severity of sample selection bias 

depends on the extent of testing, these disparities create large uncertainty regarding the relative 

disease prevalence across jurisdictions, and may contribute to the wide differences in estimated 

case fatality rates [10,11].   

 In this study, we implemented a procedure that corrects observed infection rates among 

tested individuals for non-random sampling to calculate population disease prevalence. A large 

body of empirical work in economics has been devoted to the problem of sample selection and 

                                                       
1 Notable exceptions include the universal testing of passengers on the Diamond Princess cruise ship, and 
an ongoing population-based test project in Iceland. 



 

researchers have developed estimation procedures to correct for non-random sampling [12-17]. 

Our methodology builds on these insights to correct observed infection rates for non-random 

selection into COVID-19 testing.    

 Our procedure compares how the observed infection rate varied as a larger share of the 

population was tested, and uses this gradient to infer disease prevalence in the overall population. 

Because investments in testing capacity may respond endogenously to local disease conditions, 

however, model identification requires that we find a source of variation in testing rates COVID-

19 that is unrelated to the underlying population prevalence. To this end, we relied on high 

frequency day-to-day changes in completed tests across U.S. states, which were primarily driven 

by immediate supply-side limitations rather than the more gradual evolution of local disease 

prevalence. We used this procedure to correct for selection bias in observed infection rates to 

calculate population disease prevalence across U.S. states from March 31 to April 7. 

 
2. Methodology 

2.1 Theory 

 We developed a simple selection model for COVID-19 testing and used the framework to 

link observed rates of positive tests to population disease prevalence. We considered a stable 

population, denoting 𝐴 and 𝐵 as the numbers of sick and healthy individuals, respectively. Let 

𝑝𝑛 denote the probability that a sick person is tested and 𝑞𝑛 the probability that a healthy person 

is tested, given a total number of tests, 𝑛. Thus, we have: 

𝑛 = 𝑝𝑛𝐴 + 𝑞𝑛𝐵, 

and the number of positive tests is 𝑠 = 𝑝𝑛𝐴. 



 

 This simple framework highlights how non-random testing will bias estimates of the 

population disease prevalence. Using Bayes' rule, we can write the relative probability of testing 

as the following:  

𝑞𝑛
𝑝𝑛

=
Pr(𝑠𝑖𝑐𝑘|𝑛) /Pr⁡(ℎ𝑒𝑎𝑙𝑡ℎ𝑦|𝑛)

Pr(𝑠𝑖𝑐𝑘|𝑡𝑒𝑠𝑡𝑒𝑑, 𝑛) /Pr⁡(ℎ𝑒𝑎𝑙𝑡ℎ𝑦|𝑡𝑒𝑠𝑡𝑒𝑑, 𝑛)
, 

which is equal to one if tests are randomly allocated. When testing is targeted to individuals who 

are more likely to be sick, we have Pr(𝑠𝑖𝑐𝑘|𝑡𝑒𝑠𝑡𝑒𝑑, 𝑛) > Pr(𝑠𝑖𝑐𝑘|⁡𝑛) and 

Pr(ℎ𝑒𝑎𝑙𝑡ℎ𝑦|𝑡𝑒𝑠𝑡𝑒𝑑, 𝑛) < Pr⁡(ℎ𝑒𝑎𝑙𝑡ℎ𝑦|𝑛), so the ratio will fall between zero and one. In this 

scenario, the ratio of sick to healthy people in the sample, 𝑝𝑛𝐴/𝑞𝑛𝐵, will exceed the ratio in the 

overall population, 𝐴/𝐵.  

 We specified the following functional form for the relative probability of testing: 

 𝑞𝑛
𝑝𝑛

=
1

1 + 𝑒−𝑎−𝑏𝑛
 (1) 

 

which is in [0,1] for −𝑎 − 𝑏𝑛 ≤ 0. The term 𝑒−𝑎−𝑏𝑛 > 0 reflects the fact that testing has been 

targeted towards higher risk populations, with the intercept, −𝑎, capturing the severity of 

selection bias when testing is limited. Meanwhile, the coefficient 𝑏 > 0 identifies how selection 

bias decreases with 𝑛 as the ratio 𝑞𝑛/𝑝𝑛 approaches one. Intuitively, as testing expands, the 

sample will become more representative of the overall population, and the selection bias will 

diminish. 

 Combining both equations, we have:  

log
𝑠

𝑛
= − log (1 +

1

1 + 𝑒−𝑎−𝑏𝑛
𝐵

𝐴
) . 



 

We used the fact that the ratio of negative to positive tests is much larger than one to make the 

following approximation:2 

 
log

𝑠

𝑛
≈ − log (

1

1 + 𝑒−𝑎−𝑏𝑛
𝐵

𝐴
) 

≈ log(⁡1 + 𝑒−𝑎−𝑏𝑛) − log
𝐵

𝐴
 

≈ ⁡∑
(−1)𝑘−1𝑒−𝑘𝑎

𝑘

𝑀

𝑘=1

𝑒−𝑘𝑏𝑛 − log
𝐵

𝐴
 

 

 
 
 
 
 
 
 

(2) 

 Given a change in the number of tests conducted in a particular population, 𝑛1 to 𝑛2, 

equation (2) implies the following change in the share of positive tests: 

 
log

𝑠2
𝑛2

− log
𝑠1
𝑛1

≈ ∑
(−1)𝑘−1𝑒−𝑘𝑎

𝑘

𝑀

𝑘=1

(𝑒−𝑘𝑏𝑛2 − 𝑒−𝑘𝑏𝑛1) 
(3) 

 

2.2 Model Estimation and Identification 

 Our empirical model was derived from equation (3). We used information on testing across 

states 𝑖 on day 𝑡 to estimate the following equation:  

 
log

𝑠𝑖,𝑡
𝑛𝑖,𝑡

− log
𝑠𝑖,𝑡−1
𝑛𝑖,𝑡−1

= 𝛼1 [𝑒
𝛽
𝑛𝑖,𝑡
𝑝𝑜𝑝𝑖 − 𝑒

𝛽
𝑛𝑖,𝑡−1
𝑝𝑜𝑝𝑖 ] + 𝛼2 [𝑒

2𝛽
𝑛𝑖,𝑡
𝑝𝑜𝑝𝑖 − 𝑒

2𝛽
𝑛𝑖,𝑡−1
𝑝𝑜𝑝𝑖 ] 

+⁡𝛼3 [𝑒
3𝛽

𝑛𝑖,𝑡
𝑝𝑜𝑝𝑖 − 𝑒

3𝛽
𝑛𝑖,𝑡−1
𝑝𝑜𝑝𝑖 ] + 𝑢𝑖,𝑡 

 
 

(4) 

 

where 𝑛𝑖,𝑡 is the number of tests, 𝑠𝑖,𝑡 is the share of positive tests, and 𝑝𝑜𝑝𝑖 is the state 

population. The term 𝑢𝑖,𝑡 is an error which we assumed to follow a Gaussian distribution with 

mean zero and unknown variance. We restricted the model to a cubic approximation of the 

                                                       
2 The median ratio of negative to positive tests is 7.3 to 1. In the empirical analysis, we assess the 
sensitivity of the results to this approximation. 



 

function in equation (4), since higher order terms were found to be statistically insignificant. We 

estimated equation (4) by maximum likelihood.  

 For model identification, we required that day-to-day changes in the number of tests be 

uncorrelated with the error term, 𝑢𝑖,𝑡. In practice, this assumption implies that daily changes in 

underlying population disease prevalence cannot be systematically related to day-to-day changes 

in testing. Our identification assumption is supported by at least three pieces of evidence. First, 

severe constraints on state testing capacity have caused a significant backlog in cases, so that 

changes in the number of daily tests primarily reflects changes in local capacity rather than 

changes in demand for testing. Second, because our analysis focuses on high frequency day-to-

day changes in outcomes, there is limited scope for large evolution in underlying disease 

prevalence. Finally, in robustness exercises, we augmented the basic model to include state fixed 

effects, thereby allowing for state-specific exponential growth in underlying disease prevalence 

from one day to the next.  

 To recover estimates of population infection rates, 𝑃̂𝑖,𝑡, in state 𝑖 at date 𝑡, we combined the 

estimates from equation (4) and set 𝑛 = 𝑝𝑜𝑝𝑖 according to the following equation: 

 
𝑃̂𝑖,𝑡 = exp {⁡log 𝑠𝑖,𝑡 +∑𝛼̂𝑘 (𝑒

𝑘𝛽̂ − 𝑒
𝑘𝛽̂

𝑛𝑖,𝑡
𝑝𝑜𝑝𝑖)

3

𝑘=1

} 
 

(5) 

 

We then used the Delta-method to estimate the confidence interval for 𝑃̂𝑖,𝑡.  

 
2.3 Data 

 The analysis was based on daily information on total tests results (positive plus negative) 

and total positive test results across U.S. states for the period March 31 to April 7. These data 

were obtained from the COVID Tracking Project, a site that was launched by journalists from 



 

The Atlantic to publish high-quality data on the outbreak in the United Stated [8]. The data were 

originally compiled primarily from state public health authorities, occasionally supplemented by 

information from news reporting, official press conferences, or message from officials released 

on Facebook or Twitter. We focused on the recent period to limit errors associated with previous 

changes in state reporting practices. We supplemented this information with data on total state 

population from the census [18]. 

 
3. Results 

 Figure 1 depicts the relationship between daily changes in the positive test rate and per 

capita testing, based on the relationship implied by equation (4), estimated across states for the 

period March 31 to April 7 (Table A.1, Model 1 reports the coefficient estimates). Because 𝛽̂ is 

negative, the upward sloping pattern implies a negative relationship between daily changes in 

testing and the share of positive tests. A symptom of selection bias is that variables that have no 

structural relationship with the dependent variable may appear to be significant [13]. Thus, these 

patterns strongly suggest non-random testing, since daily changes in testing should be unrelated 

to population disease prevalence except through a selection channel. 

 Table 1 reports the results that adjust observed COVID-19 case rates for non-random 

testing based on the procedure described in Section 2. Columns (2) and (3) report the adjusted 

rates for April 7 along with 95 percent confidence interval. The results suggest widespread 

undiagnosed cases of COVID-19. Estimated population prevalence ranged from 0.3 percent in 

Wyoming to 7.6 percent in New Jersey. Column 4 reports average estimated population infection 

rates from March 31 to April 7. These averages mitigate sampling error in the daily prevalence 

estimates, which depend on the observed share of positive tests on any particular day. The 



 

average estimates are similar to the April 7 estimates, albeit generally smaller in magnitude, 

suggesting continued spread of the disease in many states.   

 In Table 2, we examined the robustness of the main estimates. To begin, we estimated 

modified versions of equation (4) that include state fixed effects which allow for daily state-

specific exponential trends in infection rates. The results (reported in cols. 2 and 7) are virtually 

identical to the baseline estimates. Moreover, the augmented model tends to produce more 

precise confidence intervals. We also explored the sensitivity of the results to excluding days in 

which a large fraction of tests were positive to assess the validity of the approximation in 

equation (2). Although the sample size is reduced, the predicted infection rates are similar in 

magnitude to the baseline estimates and have similar confidence intervals (Table 3, cols. 5,6,9). 

 In Table 3, we explored the relationship between the number of diagnosed cases and total 

population COVID-19 infections implied by our estimation procedure. We compared the average 

population infection rates from March 31 to April 7 to the total number of diagnosed cases by 

April 12. Because many individuals may not seek testing until the onset of symptoms, the latter 

date was chosen to capture the virus's typical five day incubation period [19,20].   

 The results reveal widespread undetected population infection. Nationwide, we found that 

for every identified case there were 12 total infections in the population. There were significant 

cross-state differences in these ratios. In New York, where more than two percent of the 

population had been tested, the ratio of total cases to positive diagnoses was 8.7, the lowest in the 

nation. Meanwhile, Oklahoma had the highest ratio in the country (19.4), and tested less than 0.6 

percent of its population.  

 Figure 2a presents a bivariate scatter plot between the ratio of total COVID-19 cases per 

diagnosis and cumulative per capita testing by April 12.  The negative relationship (corr = -0.51) 



 

indicates that relative differences in state testing do not simply reflect a response to geographic 

differences in pandemic severity. Instead, the patterns suggest that states that expanded testing 

capacity more broadly were better able to track population prevalence.  

 Figure 2b documents a positive relationship between per capita COVID-19 diagnoses and 

population prevalence. The similarity between these two series is notable, given that our 

estimates were derived from an entirely different source of variation from the cumulative case 

counts. Nevertheless, observed case counts do not perfectly predict overall population 

prevalence, suggesting that differences in state-level policies towards COVID-19 testing may 

mask important differences in underlying disease prevalence.  

 
4. Discussion 

 The high proportion of asymptomatic and mild cases  coupled with limitations in 

laboratory testing capacity has created large uncertainty regarding the extent of the COVID-19 

outbreak among the general population. As a result, key elements of virus’ clinical and 

epidemiological characteristics remain poorly understood. This uncertainty has also created 

significant challenges to policymakers who must trade off the potential benefits from non-

pharmaceutical interventions aimed at curbing local transmission against their substantial 

economic and social costs.  

 A number of recent studies have sought to estimate COVID-19 disease prevalence and 

mortality in the United States and internationally [21-26]. One approach has been based on 

variants of the Susceptible Infectious Removed (SIR) model, in which parameters are 

“calibrated” to the specific characteristics of the SARS-CoV-2 pandemic to estimate current and 

future infections. A challenge for this approach is the large uncertainty regarding the relevant 

parameter values for the virus, and the fact that the parameter values will evolve as societies take 



 

different measures to reduce transmission. Other research has relied on Bayesian modelling to 

infer past disease prevalence from observed COVID-19 deaths, and apply SIR models to forecast 

current infection rates. This approach requires fewer assumptions regarding the underlying 

parameter values. Nevertheless, because these models ‘scale up’ observed deaths to estimate 

population infections, small differences in the assumed case fatality will have substantial effects 

on the results. This poses a challenge for estimation, given that there is considerable uncertainty 

regarding the case fatality rate, which may vary widely across regions due to local demographics 

and environmental conditions [27-31]. Moreover, to the extent that there is significant 

undercounting in the number of COVID-19 related deaths [32,33], these estimates may fail to 

capture the full extent of population infection.  

 In this paper, we developed a new methodology to estimate population disease prevalence 

when testing is non-random. Our estimation strategy offers several advantages over existing 

methods. First, the analysis has minimal data requirements. The three variables used for 

estimation – daily infections, daily number of tests, and total population – are widely reported 

across a large number of countries and subnational districts. Second, the model identification is 

transparent and depends only on a simple exclusion restriction assumption that daily changes in 

the number of conducted tests must be uncorrelated with underlying changes in population 

disease prevalence. This assumption is likely to hold in many jurisdictions where constraints on 

capacity are a primary determinant of testing. 

 We used this framework to estimate disease prevalence across U.S. states. We estimated 

substantial population infection that exceeded the observed rates of positive tests by factors of 8 

to 19. These results are consistent with recent evidence suggesting that there may be widespread 

undetected infection across many regions of the U.S. [26]. Our findings are comparable to 



 

previous studies on U.S. population prevalence that find ratios of population infection to positive 

tests ranging from 5 to 10 by mid-March [22-25].  

 Our results are comparable to recent estimates of population prevalence in a number of 

European countries [21]. We found a nationwide 1.9 percent infection rate in early April, which 

is similar to the estimated prevalence in Austria (1.1%), Denmark (1.1%), and the United 

Kingdom (2.7%) as of March 28. The highest rates of infection in New York (8.5%), New Jersey 

(7.6%), and Louisiana (6.7%) are still lower than the estimated rates in Italy (9.8%) and Spain 

(15%).  

 There are several limitations to our study, which should be taken into account when 

interpreting the main findings. First, the estimation results depend on several functional form 

assumptions including a constant exponential growth rate in new infections and the specific 

functions governing how the number of available tests affect individual testing probability. As 

more data on testing become available, the increased sample sizes will allow future studies to 

impose weaker functional form assumptions through either semi- or non-parametric approaches. 

Second, our analysis required an assumption that the underlying sample selection process was 

similar across observations. To the extent that decisions regarding who to test, conditional on the 

number of available tests, diverged across states or changed within states over the sample period, 

our model may be misspecified. Finally, our analysis depends on the quality of diagnostic 

testing, and systematic false negative test results may affect the population disease prevalence 

estimates [34-36].3  

 As countries continue to struggle against the ongoing coronavirus pandemic, informed 

policymaking will depend crucially on timely information on infection rates across different 

                                                       
3 Provided that the rates of misdiagnosis were unrelated to the number of tests, these errors will not bias 
the coefficient estimates, but may reduce precision through classical measurement error [37]. 



 

regions. In this paper, we developed a new approach to estimate population disease prevalence 

when testing is non-random. The estimation procedure is straightforward, has few data 

requirements, and can be used to estimate disease prevalence at various jurisdictional levels. 
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Figure 2: Test ing and Populat ion COVID-19 Infect ion Rates across States

(a) Per Capita Test ing and Total COVID-19 Cases per Diagnosis (b) Diagnosed Cases and Total COVID-19 Cases

Notes: (a) This figure presents the bivariate relat ionship between per capita test ing and the rat io of total COVID-19 cases per diagnosis. Tests per 1,000 populat ion
are based on the cumulat ive number of tests by April 12. The rat io is the total number of COVID-19 cases, derived from the average est imated populat ion prevalence
from March 31 to April 7, divided by the cumulat ive number of posit ive tests by Apr il 12. (b) This figure presents the bivariate relat ionship between log posit ive
tests per capita and log total COVID-19 cases per capita. Posit ive tests per 1,000 populat ion are based on the cumulat ive number of posit ive tests by April 12. The
total number of COVID-19 cases is derived from the average est imated populat ion prevalence from March 31 to April 7.
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