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Résumé/abstract  
 

Stock return predictive relations found to be elusive when using raw data may hold true for different 

layers in the cascade of economic shocks. Consistent with this logic, we model stock market returns 

and their predictors as aggregates of uncorrelated components (details) operating over different scales 

and introduce a notion of scale-specific predictability, i.e., predictability on the details. We study and 

formalize the link between scale-specific predictability and aggregation. Using both direct extraction 

of the details and aggregation, we provide strong evidence of risk compensations in long-run stock 

market returns - as well as of an unusually clear link between macroeconomic uncertainty and 

uncertainty in financial markets - at frequencies lower than the business cycle. The reported tent-

shaped behavior in long-run predictability is shown to be a theoretical implication of our proposed 

modelling approach.  
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1 Introduction

It is generally accepted that the degree of stock-return predictability increases with the horizon.

The introduction to the 2013 Nobel for Economic Sciences states: “There is no way to predict

whether the price of stocks and bonds will go up or down over the next few days or weeks. But it is

quite possible to foresee the broad course of the prices of these assets over longer time periods, such

as the next three to five years ...”

The work on predictability assumes that all relevant economic information is embedded into

shocks occurring at the highest frequency of observation. Mild short-term predictability and strong

long-run predictability are, therefore, the “reflection of a single underlying phenomenon” (Cochrane,

2001).

An alternative view, put forward in this paper, is that low-frequency economic shocks may

not just be long-run aggregates of high-frequency shocks. Consistent with this observation, low-

frequency economic relations may not imply or require analogous relations at higher frequencies. In

essence, every frequency of observation may be impacted by specific shocks and may, in consequence,

carry unique information about the validity of economic relations.

To capture these ideas parsimoniously, we introduce the notion of scale-specific predictability. We

view economic data as the result of a cascade of shocks with different magnitudes and different half

lives. We provide a framework to de-couple the interconnection between short-run shocks as induced

by, e.g., macroeconomic news announcements (Andersen, Bollerslev, Diebold and Vega, 2003) from

those between medium and long-run shocks, as determined - for instance - by political phases

(Santa-Clara and Valkanov, 2003), technological innovation (Hobijn and Jovanovic, 2001, Pastor

and Veronesi, 2009, and Gârleanu, Panageas, and Yu, (2012)), and demographic changes (Abel,

2003, and Geanakoplos, Magill and Quinzii, 2004). In our approach, scale-specific predictability is

a property of individual layers of the market returns and the predictors and is driven by scale-specific

shocks. Importantly, we discuss how suitable aggregation can reveal scale-specific predictability and

make it operational.

Intuitively, we model a generic economic time series xt as a linear aggregate of J > 1 scale-

specific, uncorrelated, mean-zero components, or details, x
(j)
t with 1 ≤ j ≤ J , in addition to a mean

term π. We define the details as elements of the observed time series generated by time-specific

(with t denoting, as always, time) and scale-specific (with j denoting scale) shocks. Higher scales are
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associated with lower resolution, lower frequencies, and higher calendar-time persistence. Higher

scales are, also, affected by shocks which are relatively smaller in size but persist in the system

longer, as is typical of long-run shocks.

Often-studied predictive relations - like the presumed dependence between market risk premia

and expected volatility (risk-return trade-offs)1 or between nominal returns and expected inflation

(Fisher effects)2 - are known to be hard to detect when using the raw series themselves. In the

framework we propose, however, these elusive relations are found to apply to specific frequencies,

levels of resolutions, or - in our jargon - scales. In essence, while the classical predictive regression

yt+h = α+βxt+ut+h may lead to ambiguous outcomes for typical pairs {yt+h, xt} and an horizon h,

the detail-wise regressions y
(j)
t+h = βx

(j)
t + u

(j)
t+h, with h = 2j defining the jth-scale’s specific horizon,

may imply a strong predictive link between hidden layers of the processes of interest.

These layers can be extracted using suitable filters, like the one-sided, linear Haar filter (e.g.,

Mallat, 1989). Extracting individual elements of a time series with specific levels of resolution

provides us with a suitable way to disaggregate information occurring at different frequencies. This,

in turn, gives us a methodology to zoom in on to specific layers of the cascade of shocks affecting

the system at different frequencies, isolate each layer, and identify those layers over which economic

restrictions are more likely to be satisfied.

By virtue of direct identification of the pairs
{
y
(j)
t+h, x

(j)
t

}
for all 1 ≤ j ≤ J , we find that the

pattern of predictability in the details often reaches a peak corresponding to scales associated with

business-cycle frequencies or lower. At these scales - but only at these scales - the corresponding

slope estimates have signs and magnitudes which may be interpreted as being consistent with

classical economic logic.

To be specific, we show that lagged values of the market return variance’s detail with a peri-

odicity between 8 and 16 years forecast future values of the corresponding variance detail as well

as future values of the excess market return’s detail with the same periodicity. In essence, we pro-

vide evidence for an extremely slow-moving component in market variance which predicts itself and

predicts a similarly slow-moving component of the market’s excess returns, i.e., a scale-specific risk-

return trade-off. Interestingly, the same finding applies to consumption variance. The consumption

1See, inter alia, French, Schwert, and Stambaugh (1987), Campbell (1987), Campbell and Hentschel (1992),
Glosten, Jagannathan, and Runkle (1993), Scruggs (1998), Harvey (2001), Ghysels, Santa-Clara, and Valkanov (2005),
and Bali and Peng (2006).

2See, among others, Mishkin (1992) and Boudoukh and Richardson (1993).
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variance’s detail with periodicity between 8 and 16 years is positively autocorrelated and predicts

future values of the excess market return’s detail with the same periodicity. Said differently, higher

past values of a slow-moving component of consumption variance predicts higher future values of the

corresponding slow-moving component in market returns because it predicts higher future values of

itself (and this higher variance component should, in agreement with classical economic theory, be

compensated). This is, again, a low-frequency risk-return trade-off, i.e., a risk-return trade-off on

selected details.

While market variance and consumption variance are hardly correlated in the raw data, the low-

frequency details delivering predictability have the same periodicity and, importantly, a correlation

close to 90%. This finding establishes an extremely close link between macroeconomic uncertainty

and uncertainty in financial markets, thereby lending support to sensible economic logic often

contradicted by elusive empirical findings on the subject. Importantly, both in the case of market

variance and in the case of consumption variance, when evaluating risk-return trade-offs by running

predictive regressions on the 8-to-16 year details, rather than on the original series, we find R2

values around 56%. These are figures hardly seen in classical assessments of predictability. We

deduce that short-run shocks hide equilibrium relations which careful signal extraction can bring

to light.

What are the implications of scale-wise predictability for long-run prediction? We show formally

that, should predictability on the scales occur, long-run future returns would be predicted by long-

run past aggregates of the predictor. More explicitly, two-way (forward for the regressand, backward

for the regressor) adaptive aggregation, as suggested by Bandi and Perron (2008), leads to increased

predictive ability precisely at horizons corresponding to a scale, or level of resolution, over which

the predictive relation is more likely to apply.

Since the work of Fama and French (1988) and Campbell and Shiller (1987, 1988), running pre-

dictive regressions of long-run returns on current values of the predictor is standard in the literature.

Cochrane (2001) emphasizes the importance of multi-year regressions in illustrating the economic

implications of forecastability, rather than as a tool to increase power in empirical assessments of

predictability. The statistical pitfalls associated with long- (and short-)run prediction have been

discussed by many (see, e.g., Stambaugh (1999), Valkanov (2003), Lewellen (2004), Campbell and

Yogo (2006), Boudoukh, Richardson, and Whitelaw (2008), and the references therein).

In this paper, long-run returns are regressed on past long-run values of the predictor, rather than
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on current values of the predictor. Not only are the regressions of forward aggregates on backward

aggregates justified by our proposed data generating process, but also the scale-wise regressions

are not affected by the statistical issues typically put forward to invalidate classical assessments of

predictability (c.f., Section 5). In light of our reported empirical and theoretical correspondence

between regressions on the details - and the spectral information they carry - and regressions on

forward/backward averages, this observation is important.3

We discuss the dual role of aggregation. First, we illustrate how aggregation may work as a

low-pass filter capable of eliminating high-frequency shocks, or short-term noise, while highlighting

the low-frequency details to which predictive restrictions apply. In this sense, finding increasing

predictability upon forward/backward aggregation is symptomatic of risk compensations which

apply to highly persistent, low-frequency details of the return and variance process. When testing

the restrictions on disaggregated raw data, such components are hidden by noisier high-frequency

details. Their signal, however, dominates short-term noise when two-way aggregation is brought to

data. Second, aggregation provides a natural way to make scale-specific predictability operational.

Because there is a close one-to-one map between predictability on the details and predictability

upon two-way aggregation, the latter provides an operational way to translate predictability on the

details into predictability for long-run market returns with its implication for, e.g., asset allocation

for the long run.

We proceed as follows. Section 2 provides a graphical representation of our approach and

findings. Section 3 reviews the literature. In Section 4 we model the data as a collection of details

operating at different times and frequencies. The notion of scale autoregressive process (scale-wise

AR) is discussed. Section 5 introduces scale-specific predictability, the idea that economic relations

may hold true for individual layers in the cascade of shocks affecting the economy and, hence, for

individual details, but may be hidden by high-frequency perturbations. In Section 6, we discuss

the dual role of low-pass filters based on two-way aggregation: detection of the level of resolution

over which scale-wise predictability plays a role and operationalization of scale-wise predictability to

forecast long-run returns. Section 7 employs direct extraction of the details, as well as aggregation,

to provide strong evidence of long-run risk-return trade-offs in market returns. We focus on both low-

frequency risk compensations due to market variance and low-frequency risk compensations due to

3For an analysis of the statistical properties of two-way regressions, we refer the interested reader to Bandi and
Perron (2008) and the simulations in the present paper.

5



consumption variance. Their close link, and overall coherence, is established by providing significant

evidence about the scale-wise co-movement between macroeconomic uncertainty, as captured by

consumption variance, and uncertainty in financial markets. In Section 8 we verify the assumptions

of theory using simulations. Section 9 turns to another well-known economic relation, namely

the Fisher hypothesis. Our interest in the Fisher hypothesis is two-fold. First, we wish to show

applicability of the methods to several, classical predictive problems. Second, contrary to risk-return

trade-offs, the case of Fisher effects is one for which maximum predictability is not obtained over

the very long haul. It is, instead, achieved over an horizon of about 8 years. Both in the case of

the risk-return trade-offs and for Fisher effects, we report a marked tent-shaped behavior in the

predictive slopes and R2s. We show, using simulations and formal derivations, that this tent-like

behavior represents an important implication of our assumed data generating process in Section 4.

Section 10 returns to the notion of scale-specific shock and provides additional technical details.

Section 11 concludes. Proofs are in the Appendices.

2 Scale-specific predictability: a visual representation and some

intuition

Consider excess market returns and (market or consumption) variance. Assume the components

(details) have been extracted. We will return to the extraction process in what follows. Figure 1

and 2 provide illustrations of the main ideas and findings.

The right panels present scatter plots of the details of excess market returns and market variance

corresponding to frequencies between 1 and 2 years (j = 1, in our previous notation), 2 and 4 years

(j = 2), and 8 and 16 years (j = 4), respectively. The left panels in Figure 1 present scatter plots

of forward aggregates of returns on backward aggregates of market variance for different levels of

aggregation. Figure 2 provides the same information for consumption variance.

Predictability on the details at scale j = 4 (bottom right panels) translates into predictability

upon two-way aggregation provided aggregation is conducted over “analogous” horizons (bottom

left panels).4 The former (predictability on the details) amounts to a spectral feature of the two

series of interest, one that carries important economic content in that it directly relates frequency,

or scale, to predictable variation in returns. The latter (predictability upon forward/backward

4The wording ”analogous” is sufficient to provide intuition here. In what follows, we provide a formal mapping.
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aggregation) is a detection tool based on raw data and, importantly for our purposes, it may be

viewed as a way to, again, translate scale-specific predictability into return predictability for the

long run, with all of its applied implications.

[Insert Figure 1 about here]

[Insert Figure 2 about here]

The one-to-one mapping between scale-wise predictability (right panels) and long-run pre-

dictability upon two-way aggregation (left panels) is remarkable. The latter is justifiable by the

former and, importantly, it would hardly be delivered by a classical predictive system. This is easy

to see.

Assume yt+1 denotes future excess market returns and xt denotes past market variance. A

traditional predictive system (on a demeaned xt) would write:

yt+1 = α+ βxt + ut+1, (1)

xt+1 = ρxt + εt+1, (2)

where ut+1 and εt+1 are possibly correlated shocks and 0 < ρ < 1. When aggregating yt+1 forward

and xt backwards over an horizon h, the theoretical slope of the regression on forward/backward

aggregates becomes βρh, but βρh → 0 as h → ∞. The left panels in Figs. 1 and 2 show, instead,

that the predictive slopes on aggregated backward/forward series increase strongly over a ten year

horizon.

In stark contrast with the classical approach, we show formally that an analogous predictive

system on suitable details of the raw series, i.e.,

y
(j)

k2j+2j
= βjx

(j)

k2j
+ u

(j)

k2j+2j
, (3)

x
(j)

k2j+2j
= ρjx

(j)

k2j
+ ε

(j)

k2j+2j
, (4)

with k ∈ Z and 1 ≤ j ≤ J , leads to the reported empirical pattern upon two-way aggregation of

the raw series provided the dyadic frequency 2j−1, 2j captures economic fluctuations over a 8-to-16

year horizon. The exact nature of this correspondence will be clarified below.
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3 The literature

The evaluation of low-frequency contributions to economic and financial time series has a long

history, one which we can not attempt to review here. Barring fundamental methodological and

conceptual differences having to do with our assumed data generating process, the approach adopted

in this paper shares features with successful existing approaches.

As in Beveridge and Nelson (1981), who popularized time-series decompositions into stochastic

trends and transitory components, we can view the details as components (more than two, in our

case) with different levels of (calendar-time) persistence operating at different frequencies. In our

framework, the components’ shocks are, again, functions of both time and scale.

Comin and Gertler (2006) argue that the common practice, in business-cycle research, of in-

cluding longer than 8-year oscillations into the trend (see e.g., Baxter and King, 1999), thereby

effectively removing them from the analysis, may be associated with significant loss of information.

We aim at capturing analogous effects. While Comin and Gertler (2006) decompose a series into

a “high-frequency” component between 2 and 32 quarters and a “medium-frequency” component

between 32 and 200 quarters, our detail extraction allows us to disentangle multiple driving forces

associated with different persistence levels within their assumed frequencies.

News arrivals at various frequencies, and the importance of shocks with alternative levels of

persistence, also characterize the multifractal regime switching approach of Calvet and Fisher (2001,

2007). Multifrequency modelling and identification are conducted differently in the present paper.

Importantly, our focus is on scale-specific economic relations and the role played by aggregation in

their evaluation, rather than on inference, pricing and learning at high frequencies (daily, in Calvet

and Fisher, 2007). To this extent, we explicitly spell out the conceptual links between the assumed

scale-wise data generating process, its identification, and aggregation.

As in Hansen and Scheinkman (2009), we employ operators to extract low-frequency information.

In our case, this is the low-frequency information embedded in the details.

Finally, essential scale-wise information in the extracted details can be summarized by a finite

number of non-overlapping, “fundamental” points (indexed, earlier, by k2j with k ∈ Z), the result

of an econometric process called “decimation”. Figure 1 and 2, right panels, are constructed using

them. Similarly, the representation in Eqs. (3)-(4) hinges on decimation. These points can be viewed

as being akin to “the small number of data averages” used by Müller and Watson (2008) to identify
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low-frequency information in the raw data. In our framework, however, they are scale-specific

and, as such, particularly useful to formalize our notion of frequency-specific, or scale-specific,

predictability.

The work on stock-return predictability is broad. The literature documents predictability in-

duced by financial ratios, see e.g. Campbell and Shiller (1988), Lamont (1998), Kelly and Pruitt

(2013), interest rate variables, see e.g. Fama and Schwert (1977), Fama and French (1989) and

macroeconomic variables, see e.g. Lettau and Ludvigson (2001), Menzly, Santos, and Veronesi

(2004), Nelson (1976), Campbell and Vuolteenaho (2004). The notion of predictability has led

to some controversy (e.g., Cochrane, 2008, for a well-known defense of predictability and refer-

ences). While it is generally accepted that long-run prediction is more successful than short-run

prediction, both are viewed as the result of the same underlying phenomenon (Cochrane, 2001).

This paper offers an alternative mechanism through which predictability may arise, at certain

frequencies alone, due to the presence of interconnected, across predictors and regressand, layers

in the flow of economic shocks. It is this mechanism which justifies our concept of scale-wise

predictability.

4 Time series modelling with scale-wise heterogeneity

We begin with an intuitive discussion of our proposed data generating process.

First, the informational flow at each scale j is represented by a mean-zero weakly-stationary (in

scale time) component (or detail), denoted by x(j), localized with respect to time t and scale j. The

evolution of the generic jth-detail time series is specified on a dyadic time grid k2j with k ∈ Z. In

particular, each detail is represented as an autoregressive process for which the conditional mean

and the conditional variance are left unspecified, namely,

x
(j)

k2j+2j
= µ

(
x
(j)

k2j
, x

(j)

k2j−2j , ...
)

+ σ
(
x
(j)

k2j
, x

(j)

k2j−2j , ...
)
ε
(j)

k2j+2j
for all j = 1, 2, ...J , (5)

where the scale-specific shocks ε
(j)

k2j
are assumed to be uncorrelated across scales, white noise, mean

zero and variance one. We note that every observation x
(j)

k2j
may be viewed as representing the

outcome of informational flows between time k2j − 2j and time k2j . The informational flows are

driven by scale-specific shocks ε
(j)

k2j
. Importantly, these shocks may not be aggregates of higher
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frequency shocks.

Second, we model an observed time series (x) as the unique outcome of a suitable aggregation

scheme applied to the details (x(j)). A sensible proposal would be to assume that the aggregation

scheme is linear and each observation x can be expressed as an additive collection of scale-specific

processes plus a mean term π:

xt =
J∑
j=1

x
(j)
t + π. (6)

However, Eq. (5) specifies the dynamics of details on a dyadic grid, i.e., x
(j)

k2j
, while reconstruction

of xt using Eq. (6) would require that x
(j)
t is known for any time t, and hence on the finest grid,

something which would be inconsistent with Eq. (5).

Two natural questions arise, the former having to do with aggregation, the latter having to do

with filtering : Is the specification of the details on a coarse (scale-specific) grid sufficient to uniquely

identify the observations xt on the basis of a suitable aggregation scheme? Can the ”inversion” of

the adopted aggregation scheme provide a unique determination of the detail-specific observations{
x
(j)

t−2jkj

}
j=1,..,J, kj∈N

from observations on the aggregate process {xt−n}n∈N? These questions have

a known, positive answer. Below, in order to aggregate the observations
{
x
(j)

t−2jkj

}
j=1,..,J, kj∈N

into {xt−n}n∈N (and filter
{
x
(j)

t−2jkj

}
j=1,..,J, kj∈N

from {xt−n}n∈N) we employ a recursive algorithm

introduced by Mallat (1993) and discussed in Appendix B. An intuitive application of the Mallat’s

algorithm produces the Haar matrix, the aggregation scheme used in this paper.

Eq. (6) clarifies the basic intuition behind our approach: we model a time series as as an

additive collection of scale-specific processes and, therefore, as a cascade of scale-specific shocks

(Section 10 for more details).5 At a more technical level, however, our adopted data generating

process defines each observation xt as a linear combination of scale-specific detail observations{
x
(j)

t−2jkj

}
j=1,..,J, kj∈N

. The coefficients of the linear combination are uniquely determined by the

rows of the inverse Haar matrix. We call this data-generating process scale-wise autoregressive

(AR).

Econometrically, the technical approach that we propose (hinging on the Haar matrix) for

5One can show that, in the 2-component case, i.e., xt =
∑2

j=1 x
(j)
t + π, if the details are AR(1) processes, the

resulting process is an ARMA(6, 4). The presence of J > 2 components would simply increase the order of the ARMA
structure. Fuster, Laibson, and Mendel (2010) make a strong economic case for using high order structures in spite
of the outcome of standard model-selection criteria, like AIC and BIC. These criteria are known to often recommend
excessively low-order dynamics.
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collecting the details and filtering them is only a possible one. The structure of the Haar filter

is particularly helpful for us to formalize, below, the connection between scale-wise predictability

and predictability upon two-way aggregation without introducing unnecessary complications. This

said, any alternative multiresolution filter can be viewed as an aggregation scheme (e.g., Abry,

Veitch, and Flandrin (1998)) and could be employed instead.

4.1 Linear details

For our data, the filtered (using the Haar matrix) components are well described by a linear autore-

gressive process of order 1. We, therefore, adopt a convenient (2-parameter) linear autoregressive

structure for them. Such a structure is not only justified empirically, but it will also allow us to

draw a helpful comparison between classical predictive systems (in which the predictor is routinely

modeled as an autoregressive process of order 1) and our proposed notion of scale-wise predictive

system (Section 5). To this extent, we write

x
(j)

k2j+2j
= ρjx

(j)

k2j
+ ε

(j)

k2j+2j
. (7)

In essence, the details are autoregressive of order 1 in the dilated time of the scale being consid-

ered. The parameter ρj captures scale-specific persistence, the value σj represents the magnitude

of economic shocks over different scales. From an inferential standpoint, {ρj , σj} can be readily

estimated once the details have been extracted. Motivated by issues of signal processing akin to

the economic issues of interest to us, Dijkerman and Mazumdar (1994) suggests an analogous linear

dynamic structure for the details.

We note that dependence in scale time ρj may be considerably lower than dependence in calendar

time, the later being an increasing function of the scale (Appendix C, Subsection C.2.1 for a formal

proof). We also note that the assumption of uncorrelatedness of the details across scales is supported

by the ability of the extraction filters we employ to “de-correlate” the original observations (see,

e.g., Dijkerman and Mazumdar (1994) and Gençay, Selçuk, and Whitcher (2001)). Both features,

i.e., low correlation in scale time and uncorrelatedness across scales, are verified in the data.

A data generating process with similar features to the one we proposed here has proven successful

in the context of structural consumption models to explain the market risk premium (Ortu, Tamoni,

and Tebaldi (2013) and Tamoni (2011)) and to provide an alternative view of cross-sectional asset
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pricing by virtue of a novel notion of scale-specific beta (Bandi and Tamoni, 2013). In this paper we

show that a scale-wise specification is key to explaining the long-run predictive features of the data.

In essence, we employ a scale-time process to broaden the scope and nature of tests of economic

restrictions (with an emphasis on predictive relations) and introduce a new approach for modelling

and testing these restrictions. In addition, we study formally the dual role of suitable (two-way)

aggregation in detecting scale-specific economic restrictions and translating them into operational

long-run features of the data.

Having made this point, we emphasize that our focus is not on inference at different frequencies,

something which has routinely been tackled using spectral methods since the early work of Hannan

(1963a,b). Our interest is on modelling and on the theoretical and empirical implications of the

assumed specification for predictability at different horizons. Explicit localization in both time and

scale is important for our purposes and is readily delivered by our proposed modelling approach.

Scale-wise analogues to the traditional predictive systems, to which we now turn, are a central

feature of the approach.

5 Scale-wise predictive systems

Consider a regressand y and a predictor x. Assume y and x are, as discussed above, additive

(Haar-based) collections of details modelled as in Eq. (7). Assume, also, that for some 1 ≤ j ≤ J ,

y
(j)

k2j+2j
= βjx

(j)

k2j
+ u

(j)

k2j+2j
(8)

x
(j)

k2j+2j
= ρjx

(j)

k2j
+ ε

(j)

k2j+2j
, (9)

where u
(j)

k2j+2j
is a scale-specific forecast error.

Eqs. (8)-(9) define a predictive system on individual layers of the {y, x} process to be contrasted

with the traditional system written on the raw series. We will show that, for our data, the system

is not affected by the inferential issues generally associated with predictability.

High first-order autocorrelation of the predictor, in particular, has been put forward as a lead-

ing cause of inaccurate inference in predictive systems (e.g., Stambaugh (1999), Valkanov (2003),

Lewellen (2004), Campbell and Yogo (2006), and Boudoukh, Richardson, and Whitelaw (2008)).

In our framework, however, we expect the magnitude of ρj to be smaller, the higher the scale and,
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hence, the lower the frequency at which it operates. Consistent with this logic, at the low frequencies

over which we identify scale-wise forecastability, ρj will be estimated to be small.

Before turning to empirical evaluations of Eqs. (8)-(9), we discuss the implications of the pro-

posed data generating process for aggregation.

6 Two-way aggregation

It is standard in macroeconomics and finance to verify predictability by computing linear, or non-

linear, projections at the highest frequency of observation. It is also common to aggregate the re-

gressand. A recent approach proposed by Bandi and Perron (2008) aggregates both the regressand

(forward) and the regressor (backwards). The aggregate regressor is adapted to time t information

and is, therefore, non anticipative. The logic for aggregating both the regressand and the regressor

resides in the intuition according to which equilibrium implications of economic models may im-

pact highly persistent components of the variables {y, x} while being hidden by short-term noise.

Aggregation provides a natural way to extract these components, filter out the noise, and generate

a cleaner signal. Using the assumed data generating process, we now formalize this logic.

Proposition. Assume that, for some j = j∗ , we have

y
(j∗)

k2j∗+2j∗
= βj∗x

(j∗)

k2j∗
,

x
(j∗)

k2j∗+2j∗
= ρj∗x

(j∗)

k2j∗
+ ε

(j)

k2j∗+2j∗
,

whereas
{
y
(j)

k2j
, x

(j)

k2j

}
= 0 for j 6= j∗. We map decimated-time observations into calendar-time

observations using the inverse Haar transform. Then, the forward-backward regressions

yt+1,t+h = bhxt−h+1,t + εt+1,t+h

reach the maximum R2 of 1 over the horizon h = 2j
∗

and, at that horizon, bh = βj∗ .

Proof. See Appendix C.2.2.

For simplicity, we dispense with forecasting shocks ut in the Proposition. Predictability applies

to a specific j∗ detail. All other details are set equal to zero.

The Proposition shows that predictability on the details implies predictability upon suitable
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aggregation of both the regressand and the regressor. More explicitly, economic relations which

apply to specific, low-frequency components will be revealed by two-way averaging. Adding short-

term or long-term shocks in the form of uncorrelated details
{
y
(j)

k2j
, x

(j)

k2j

}
, for j < j∗ or for j > j∗,

or forecasting errors different from 0, would solely lead to a blurring of the resulting relation upon

two-way estimation. We add uncorrelated details
{
y
(j)

k2j
, x

(j)

k2j

}
for j 6= j∗ in the simulations in

Section 8.

The Proposition also makes explicit the fact that the optimal amount of averaging should be

conducted for time lengths corresponding to the scale over which predictability applies. More specif-

ically, under the above assumptions, if predictability applies to a specific detail with fluctuations

between 2j
∗−1 and 2j

∗
periods, an R2 of 1 would be achieved for a level of (forward/backward)

aggregation corresponding to 2j
∗

periods. Before and after, the R2s should display a tent-like be-

havior. At this horizon, the theoretical slope (b2j∗ ) of the forward/backward regressions would

coincide with the theoretical slope (β2j∗ ) of the detail-wise regressions. This is an implication of

our approach which will be verified in the data.

The proposed data generating process has, under the above assumptions, an additional impli-

cation worth mentioning. If predictability at the same j∗th scale applies, should forward predictors

(yt+1,t+h) be regressed on differences of aggregated regressors (xt−h+1,t − xt−2h+1,t−h), rather than

on aggregated regressors (xt−h+1,t), a large R2 would be achieved for a level of aggregation corre-

sponding to 2j
∗−1 periods, rather than 2j

∗
periods. The sign of the slope estimate upon two-way

aggregation would also be the opposite of the sign of the theoretical slope linking details at the j∗th

scale (see Appendix C-C.2.4). We will use this additional implication of theory to further validate

the consistency between the assumed data generating process and the empirical findings in Section

9.

Next, we broaden the scope of classical predictability relations in the literature. We focus on

risk-return trade-offs, and the low-frequency link between financial market variance and macro

(consumption) variance. We later discuss Fisher effects. We first show the outcome of two-way

aggregation and predictive regressions run on aggregated raw series. We then turn to regressions

on the extracted details and illustrate the consistency of their findings with those obtained from

two-way aggregation. This consistency is further confirmed by simulation as well as in the context

of the theoretical treatment in Appendix C. From an applied standpoint, one could proceed in the

opposite way: detect predictability on the scales and then utilize predictability on the scales by
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suitably aggregating regressands and regressors. The latter method is a way in which one could

exploit the presence of a scale-specific risk-return trade-off to perform return predictability and,

among other applications, asset allocation over suitable horizons.

7 Risk-return trade-offs

7.1 Equity returns on market variance

The basic observation driving our understanding of the analysis of risk-return trade-offs at differ-

ent levels of aggregation is the following: the “basis” of independent shocks yielding return time

series must be classified along two dimensions: their time of arrival and their scale or level of

resolution/persistence.

As discussed above, we propose an adapted linear decomposition which represents a time series

as a linear combination of decorrelated details whose spectrum is concentrated on an interval of

characteristic time scales (inverse of frequencies) ranging from 2j−1 to 2j .6

We apply the decomposition to logarithmic excess returns and realized variance series, i.e.,

yt = rt and xt = v2t .
7 The details are shown in Figure 3. The hypothesis of uncorrelatedness

among detail components with different degrees of persistence is not in contradiction with data.

Table 2 presents pair-wise correlations between the individual details for both series. Virtually all

correlations are small and very statistically insignificant. Not surprisingly, the largest one (0.39)

corresponds to the adjacent pair of variance scales j = 3 and j = 4.8

[Insert Figure 3 about here]

[Insert Table 2 about here]

6For a clear interpretation of the j-th scale in terms of the corresponding time span, we refer to Table 1.
7Appendix F describes the data and the construction of the variables.
8It is worth emphasizing that these pair-wise correlations are obtained by using overlapping or redundant data on

the details rather than the non-overlapping or decimated counterparts described in Subsection A.1. This is, of course,
due to the need of having the same number of observations for each scale. Hence, even though they are small, we
expect these correlations to overstate dependence.

There could also be leakage between adjacent time scales. It is possible to reduce the impact of leakage by replacing
the Haar filter with alternative filters with superior robustness properties (the Daubechies filter is one example). The
investigation of which filter is the most suitable for the purpose of studying predictability on the scales is beyond the
scopes of the present paper. As pointed out earlier, also, the use of the Haar filter is particularly helpful to relate
scale-wise predictability to aggregation, a core aspect of our treatment.
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Next, we consider the forward/backward regressions

rt+1,t+h = αh + βhv
2
t−h+1,t + ut,t+h, (10)

where rt+1,t+h and v2t−h+1,t are aggregates of excess market returns and return variances over an

horizon of length h. Empirical results are displayed in Table 3-Panel A1 (horizons 1 to 10 years)

and Table 3-Panel A2 (horizons 11 to 20 years). In Table 3-Panel A1, we confirm the findings in

Bandi and Perron (2008) who report horizons of aggregations up to 10 years: future excess market

returns are correlated with past market variance. Dependence increases with the horizon, and is

strong in the long run, with R2 values between 7 and 10 years ranging between 15.7% and 45.8%.

A crucial observation, for our purposes, is that the long-run results are not compatible with

classical short-term risk return trade-offs. Disaggregated asset pricing models which solely imply

dependence between excess market returns and (autoregressive) conditional variance at the highest

resolution can hardly deliver the reported findings upon aggregation. As discussed in the Intro-

duction, in fact, forward/backward aggregation of the system in Eqs. (1)-(2) would give rise to a

theoretical slope equal to βρh, but βρh → 0 as h→∞, an outcome which is in stark contrast with

the reported empirical evidence.

We argue that this argument points to an alternative data generating process, one in which low-

frequency shocks are not necessarily linear combinations of high-frequency shocks and low-frequency

dynamics are not simply successive iterations of high-frequency dynamics. To this extent, we view

the relation between risk and return as being scale-specific. In agreement with the implications of the

discussion in Section 6, aggregation is helpful to reveal low-frequency, scale-wise risk compensations

and make them operational.

To corroborate this logic, we run detail-wise predictive regressions as in Eqs. (8)-(9). The results

are based on yearly data and are reported in Table 3-Panel B.9 For a clear interpretation of the

corresponding levels of resolution, we refer to Table 1.

The strongest predictability is for j = 4, which corresponds to economic fluctuations between 8

and 16 years. For j = 4, the R2 of the detail-wise predictive regression is a considerable 56%.

9Given a scale j, we work with an effective sample size of
[
T/2j

]
observations, where [.] denotes the smallest integer

near T/2j . In this empirical analysis, we consider a sample spanning the period 1930 to 2013 and J = 4. We estimate
scale-wise predictive systems using annual observations with five possible starts: 1930-2009, 1931-2010,...,1934-2013.
Mean values of the estimates are reported. In practice, any choice of year start would yield very similar figures.
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An important implication of theory is that, should predictability apply to a specific detail

with fluctuations between 2j−1 and 2j periods, the maximum R2 would be achieved for a level of

(forward/backward) aggregation corresponding to 2j periods. Before and after, the R2 is expected

to display a tent-shaped behavior. In our case, 2j = 16 years. In Table 3-Panel A2 we extend

the two-way regressions to horizons between 11 years and 20 years. Consistent with theory, the

R2 values reach their peak (around 64%) between 14 and 16 years. Remarkably, the R2 structure,

before and after, is roughly tent-shaped. The estimated beta values obtained by aggregating over

an horizon of 14 to 16 years (1.55 to 1.38) are also numerically close to the estimated beta on the

detail-wise regressions (1.16).

The study of low frequency relations is made difficult by the limited availability of observations

over certain, long horizons. We do not believe that this difficulty detracts from the importance of

inference at low frequency, provided it is conducted carefully. Importantly for the purposes of this

paper, however, here we do not solely focus on low frequency dynamics. The reported tent-shaped

behavior (a crucial by-product of the assumed data generating process) requires the dynamics at all

frequencies to cooperate effectively, i.e., even at those high frequencies for which data availability

would not be put forward as a statistical concern.

Standard economic theory views the presence of a market risk-return trade-off as compensation

for variance risk. Given this logic, for past variance to affect future expected returns, higher past

variance should predict higher future variance. Over the very long run, this is not the case in the raw

data (see Appendix D). Remarkably, however, at the scale over which we report predictability (i.e.,

the 8 to 16 year scale), we find a positive dependence between past values of the variance detail and

future values of the same detail (Table 3-Panel C). The R2 of the detail-wise variance autoregression

is a rather substantial 15.3% with a positive slope of 0.04. As explained earlier, it is unsurprising

to find a low scale-wise (for j = 4) autocorrelation. While the autocorrelation value appears small,

we recall that it is a measure of correlation on the dilated time of a scale designed to capture

economic fluctuations with 8- to 16-year cycles. As shown in Appendix C.2.1, the corresponding

autocorrelation in calendar-time would naturally be higher. In light of the examined long horizon,

it is also unsurprising to find a large estimation error associated with the reported autocorrelation.

Importantly for our purposes, the documented low dependence between past and future vari-

ance dynamics at frequencies over which predictability applies differentiates our inferential problem

from classical assessments of predictability. It is typically the case that high persistence of the
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predictor makes classical inference incorrect (e.g., Valkanov (2003)). This issue does not arise in

our framework.

[Insert Table 3 about here]

To summarize, we find that, at scale j = 4, a very slow-moving component of the variance

process predicts itself as well as the corresponding component in future excess market returns. Said

differently, higher past values of a variance detail predict higher future values of the same variance

detail and, consequently, higher future values of the corresponding detail in excess market returns,

as required by conventional logic behind compensations for variance risk. While this logic applies to

a specific level of resolution in our framework, it translates - upon aggregation - into predictability

for long-run returns as shown formally in Section 6 and in the data.

We now turn to consumption variance.

7.2 Equity returns on consumption variance

Replacing market variance with consumption variance, as justified structurally by Tamoni (2011),

does not modify the previous results. If anything, it reinforces previous findings.10

Running detail-wise predictive regressions leads again to maximum predictability (and an R2 of

56%) associated with low-frequency cycles between 8 and 16 years, i.e., j = 4 (Table 4-Panel B).

Similarly, for j = 4, a detail-wise autoregression of future consumption variance on past consumption

variance yields a positive (and larger than in the market variance case) autocorrelation of 0.15 and

an R2 value of about 56%.

Coherently with the implications of theory, two-way aggregation generates the largest R2 values

over horizons close to 16 years (Table 4-Panel A1 and Panel A2). The largest R2 is obtained at

the 14 year horizon (61.87%) but the values between 12 years and 16 years are all consistently

between 60% and 57%. For shorter and longer horizons, the R2s decline with a tent-shaped, almost

monotonic, structure. They are between 0 and 3% over time periods between 1 and 5 years and

close to 7% over the 20-year horizon.

Again, two-way aggregation leads to slope estimates which relate, in terms of their numerical

value, with the slope estimates of the corresponding scale-wise predictive regressions. Over horizons

10We note that the “de-correlation” property of the details strongly applies to consumption variance (see Table 2).
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between 8 and 16 years, we find estimated slopes ranging between 3.72 and 5.76. The slope estimate

on the detail-wise predictive regression is 4.76.

[Insert Table 4 about here]

In sum, because it predicts itself, a slow-moving component of consumption variance has fore-

casting ability for the corresponding slow-moving component of excess market returns. This finding

points, once more, to a low-frequency risk compensation in market returns, one that - however -

operates now through the economically-appealing channel of consumption risk.

7.3 The relation between market variance and consumption variance

These observations raise an important issue having to do with the relation between uncertainty in

financial markets and macroeconomic uncertainty, as captured by consumption variance. Barring

small differences, when exploring suitable scales, both variance notions have predictive power for

excess market returns on the details. Similarly, they both have predictive power for long-run returns

upon adaptive (two-way) aggregation.

While this result appears theoretically justifiable since there should be, in equilibrium, a close re-

lation between consumption variance and market variance (see, e.g., Eq. (12) in Bollerslev, Tauchen,

and Zhou, 2009, for a recent treatment), the empirical relation between these two notions of uncer-

tainty is well-known to be extremely mild, at best. In an influential paper on the subject, Schwert

(1989) finds a rather limited link between macroeconomic uncertainty and financial market vari-

ance. This work has spurred a number of contributions which, also, have provided evidence that

the relation between variance in financial markets and a more ”fundamental” notion of variance is

extremely weak in US data (see, e.g., the discussion in Diebold and Yilmaz, 2008).

We argue that this statistical outcome may not be as counter-intuitive as generally believed.

Specifically, it may be due to variance comparisons which focus on high frequencies. Schwert

(1989), for instance, uses monthly data from 1857 to 1987. We conjecture that, being the result of

equilibrium conditions, the presumed relation between macroeconomic variance and financial market

variance may not occur at high frequencies and may, therefore, be irreparably confounded in the raw

data. Using our jargon, the relation could, however, hold true for suitable lower frequency details

of both variance processes. Figure 4-Panels A and B provides graphical representations supporting

this logic. The upper panel relates market variance to the variance of consumption growth using
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yearly data. The lower panel looks at the link between the details of the two series with scale j = 4,

i.e., the details capturing economic fluctuations between 8 and 16 years. The relation between the

raw series is extremely mild, the correlation being about 0.05. The details are, instead, very strongly

co-moving. Their estimated correlation is around 90%.

[Insert Figure 4 about here]

A large, successful literature has examined the validity of classical risk-return relations by refin-

ing the way in which conditional means and conditional variances are identified (see Harvey (2001),

Brandt and Kang (2004), Ludvigson and Ng (2007)). Similarly, a large, equally successful literature

has studied the properties of financial market volatility and, in some instances, looked for significant

associations, dictated by theory, between macroeconomic uncertainty and uncertainty in financial

markets. This paper addresses both issues by taking a unified view of the problem, one which

emphasizes the role played by low-frequency shocks. We argue that equilibrium relations, the one

between future excess market returns and past consumption/market variance or the one between

contemporaneous market variance and contemporaneous consumption variance, may be satisfied at

the level of individual layers of the raw series while being drastically clouded by high-frequency

variation in the data.

8 Simulating scale-specific predictability

One important observation about two-way aggregation is in order. One may argue that, by gener-

ating stochastic trends, aggregation could lead to spurious (in the sense of Granger and Newbold,

1974, and Phillips, 1986) predictability. If this were the case, contemporaneous aggregation should

also lead to patterns that are similar to those found with forward/backward aggregation. In all

cases above, one could show that this is not the case.11 In other words, contemporaneous aggrega-

tion does not lead to any of the effects illustrated earlier (including consistency between the slope

estimates obtained from the aggregated series and from the details). In addition, spurious behavior

would prevent a tent-shape pattern from arising in the t-statistics and R2 from predictive regressions

on the aggregated series because it would simply lead to (approximate, at least) upward trending

11The corresponding tables are not reported for conciseness but can be provided by the authors upon request.
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behavior in both. As shown earlier in the data, as well as formally in Appendix C, Subsection C.2.2

and in the simulations below, however, tent-shaped patterns can easily arise.

In this section we establish, by simulation, that scale-wise predictability translates into pre-

dictability upon two-way aggregation. Supporting the implications of theory in Appendix C, we

show that tent-shaped patterns are readily generated. We also show that, if predictability on the

details applies, contemporaneous aggregation leads to insignificant outcomes. Similarly, if no pre-

dictability on the details applies, two-way aggregation leads to insignificant outcomes. In sum, the

findings discussed in this section provide support for a genuine 8-to-16 year cycle in the predictable

variation of the market’s risk-return trade-offs, as reported previously.

We begin by postulating processes for the (possibly related) details of the variance and return

series:

r
(j)

k2j+2j
= v

2(j)

k2j
(11)

v
2(j)

k2j+2j
= ρjv

2(j)

k2j
+ ε

(j)

k2j+2j

for j = j∗ and

r
(j)

k2j+2j
= u

(j)

k2j+2j

v
2(j)

k2j+2j
= ε

(j)

k2j+2j

for j 6= j∗, where k is defined as above and j = 1, . . . , J = 9. The shocks ε
(j)
t and u

(j)
t satisfy

corr(u
(j)
t , ε

(j)
t ) = 0 ∀t, j. The model implies a predictive system on the scale j∗ and unrelated

details for all other scales. In other words, predictability only occurs at the level of the j∗th detail.

We note that the only conceptual difference between this simulation set-up and the assumptions

in the Proposition is the addition of noise
{
u
(j)

k2j+2j
, ε

(j)

k2j+2j

}
for scales j 6= j∗. As discussed,

uncorrelated shocks will only lead to a blurring of the relation.

Here, the scales are defined at the monthly level. Due to the dyadic nature of the scales, this

is simply done to gain granularity in the analysis. The data generating process is again formulated

for non-overlapping or ”decimated” data. As described earlier, we simulate the process at scale

j every 2j steps and multiply it by the inverse Haar transformation in Appendix A.1 to obtain

calendar-time observations. Appendix C, Subsection C.1 illustrates within a tractable example the
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simulation procedure in the time-scale domain and the reconstruction steps in the time domain.

In agreement with the discussion in Section 6, we will now show that a predictive relation

localized around the j∗th scale will produce a pattern of R2s which has a peak for aggregation levels

corresponding to the horizon 2j
∗
.

8.1 Running the predictive regression

Table 5-Panel A shows the results obtained by running the regression in Eq. (10) on simulated

data generated from Eq. (11). We compare these results to those in Table 6, where no scale-wise

predictability is assumed.

When imposing the relation at scale j∗ = 6, i.e., for a time span of 32 to 64 months (c.f., Table

1), we reach a peak in the R2s of the two-way regressions at 5 years. The 5-year R2 is about 25 times

as large as the one obtained in the case of a spurious regression at the same horizon. Moreover,

the slope estimates increase reaching their maximum value at 5 years and approaching the slope’s

true value on the 6th details of 1 (with some attenuation due to the impact of other scales). After

the 5-year mark, the slope estimates decrease almost monotonically. This is a rough tent-shaped

pattern which readily derives solely from imposing scale-wise predictability at a frequency lower

than business-cycle frequencies but not as low as, say, the 10-year or 120-month frequency (c.f.,

Appendix C, Subsection C.2.2).

[Insert Tables 5 and 6 about here]

If we now impose the relation at scale j∗ = 7, i.e., for a time span of 64 to 128 months, we

would expect the peak in the R2s from the two-way regressions to shift to about 128 months, again

the upper bound of the range of possible horizons given scale j∗ = 7. Should this horizon also

be the upper bound of the horizons of aggregation, we would expect upward trending behavior in

the estimated slopes, t-statistics, and R2. This logic is consistent with the simulations in Table 7

confirming the ability of suitable aggregation to detect scale-wise predictability over the relevant

scale.

[Insert Table 7 about here]

As emphasized earlier, should aggregation lead, somewhat mechanically, to statistically signifi-

cant, larger slopes and higher R2 by virtue of the creation of stochastic trends, tent-shaped behaviors
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would be unlikely and contemporaneous aggregation would also lead to spurious predictability. We

have shown that tent-shaped structures naturally arise from predictability at the corresponding

scale. We now turn to contemporaneous aggregation. Again, we consider the cases j∗ = 6 and

j∗ = 7 (in Table 5- and Table 7-Panel B). When both the regressor and the regressand are ag-

gregated over the same time interval, no predictability is detected. Appendix C-C.2.3 provides a

theoretical justification. Appendix D contains additional simulations and diagnostics.

9 Fisher hypothesis

In its simplest form, the Fisher hypothesis postulates that the nominal rate of return on assets

(interest rates as well as nominal returns on equities, for example) should move one-to-one with

expected inflation (Fisher, 1930). The empirical work on the subject is broad and somewhat mixed

in terms of findings. For example, Mishkin (1992) and Fisher and Seater (1993) run regressions

of h-period continuously-compounded nominal interest rates (and h-period GDP growth) on con-

temporaneous h-period expected inflation (and the growth of nominal money supply). Boudoukh

and Richardson (1993) run regressions of h-period nominal stock returns also on contemporaneous

h-period expected inflation. In both cases, it is natural to test whether the slope of the predictive

regression is equal to 1, as implied by theory. Both Mishkin (1992) and Boudoukh and Richardson

(1993) find evidence supporting this null hypothesis. Using new asymptotic arguments, Valkanov

(2003) re-examines their evidence: while in the pre-1979 period the effect is strong, after 1979 the

effect is still present, but is not as convincing.

Here, we study the relation between nominal rates of returns and inflation by exploring pre-

dictability using backward/forward aggregation. We find that, for a suitable horizon h, h-period

continuously-compounded nominal returns are strongly correlated with past h-period realized infla-

tion. The same logic as that employed for long-run risk-return trade-offs may be applied to explain

these findings. If low-frequency details of the nominal rates are linked to low-frequency details of

realized inflation, two-way aggregation will uncover this dependence. Direct extraction of the details

would also allow us to zoom in onto individual layers of information. We are now more specific.

The results are reported in Tables 8-Panels A, B, and C. For nominal stock returns, we find,

again, a tent-shaped predictability pattern (as aggregation increases) with a peak between 7 and

9 years. Importantly, as predictability increases, the corresponding beta estimates approach the
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value of 1. The 1-year beta is 0.42 with a t-statistic of 0.56 and an R2 of 0.74%. The 16-year beta

is 0.75 with a t-statistic of 2.42 and an R2 of 16.6%. The 8-year beta, instead, is equal to 1.09 with

a t-statistic of 3.34 and an R2 of about 28%.

Turning to the details, at scale j = 3, i.e., for frequencies between 4 and 8 years, the R2 of the

predictive regression has a value of about 25%. Its associated slope estimate is positive (2.10). So,

is the autocorrelation coefficient (0.16) associated with the autoregression on the 3rd detail of the

inflation process. We recall that the estimated autocorrelation is on non-overlapping low-frequency

observations. The corresponding calendar-time autocorrelation would be considerably higher.

[Insert Table 8 about here]

Analogous findings apply to nominal interest rates (Table 9). With two-way aggregation, the

1-year beta is 0.37 with a t-statistic of 2.94 and an R2 of about 21%. The 8-year beta is, instead,

twice as large and equal to 0.71 with a t-statistic of 3.13 and an R2 of about 35.53%. The tent-

shaped pattern is even more marked than in the previous case. The corresponding detail (j = 3)

yields a predictive regression with a positive slope and an R2 value of 13.24%.

[Insert Table 9 about here]

In sum, a predictable slow-moving component of the inflation process (operating between 4 and

8 years) appears to correlate with slow-moving components of nominal stock returns and interest

rates. Higher past values of the j = 3 inflation detail predict higher future values of the same detail,

as well as higher values of the nominal rates’ details, thereby yielding compensation for inflation

risk at a low level of resolution. Such a compensation is revealed by two-way aggregation.

Gathering essential information about low-frequency dynamics is inevitably hard. Yet, even

though the predictive and autoregressive slopes on the decimated details may not be accurately

estimated, the results are striking. Differently from the risk-return trade-offs analyzed in Section 7,

which operate at scale j = 4, the economic logic underlying Fisher hypothesis appears to be satisfied

at scale j = 3. In agreement with our formal discussion in Section 6, two-way aggregation should

yield maximum predictability over an horizon close to 23, i.e., close to 8 years. This is, in fact,

largely consistent with data. It is also consistent with an additional set of simulations, calibrated

on the data, which assume scale-wise predictability at scale j = 3 and find a peak of predictability

upon two-way aggregation precisely at 8 years (Table 8-Panel A2).
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As discussed in Section 6 (and shown in Appendix C, Subsection C.2.2) predictable variation

induced by a specific detail, like j = 3 (here) or j = 4 (in the previous section), would induce tent-

shaped behavior upon aggregation. Another interesting implication of our assumed data generating

process is that, if we were to run regressions of forward aggregated nominal returns on differences

of backward aggregated inflation (rather than on levels), a large amount of predictability would

occur at the horizon 23−1 rather than at the horizon 23. In addition, the slope estimate would be

negative, rather than positive (Appendix C, Subsection C.2.4). We confirm both implications of

theory with data.

Table 10-Panel A provides the corresponding results for nominal market returns. Leaving the

8 to 10 year horizon aside, the maximum R2 is obtained for h = 4. The estimated slope at this

horizon is negative and equal to −1.59. Simulations support these findings. As in Table 8, we

assume a data generating process, calibrated on the data, with predictable variation corresponding

to the 3rd scale. Again, leaving the 8 to 10 year horizon aside, the largest R2 is obtained for h = 4.

The corresponding estimated slope is also negative and close to what is found in the data (−1.22

rather than −1.59). It is interesting to notice that, not only does this model diagnostic provide

support for the expected behavior of the assumed scale-based data generating process at h = 4, it

also delivers lower frequency outcomes (over 8 to 10 years) which are consistent with data. Both in

the data and in simulation the long-run slopes (horizons between 8 and 10 years) are positive and

rather significant. The corresponding R2s are, also, somewhat larger.

[Insert Table 10 about here]

Before concluding, we turn to a more technical discussion about the nature - and interpretation

- of scale-specific shocks.

10 Scale-specific shocks

Consider, using the terminology employed earlier, a scale-wise AR process with mean π. Since

the details are autoregressive with uncorrelated (across time and scale) scale-specific shocks ε
(j)
t ,

the conventional Wold theorem, applied to the details, implies that each observation xt can be
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decomposed into a cascade of shocks, i.e.,

xt =

J∑
j=1

∞∑
k=0

aj,kε
(j)

t−k2j + π, (12)

with aj,k = E
(
xt, ε

(j)

t−k2j

)
. Hence, our assumed data generating process represents the idea that

full information updates require the realization of the economic shocks affecting all frequencies.

It is interesting to observe that one can write an analogous decomposition (understood in the

mean-squared sense) for any weakly stationary time series {xt−i}i∈Z:

xt =
J∑
j=1

∞∑
k=0

aj,kε
(j)

t−k2j +
∞∑
k=0

bJ,kπ
(J)

ε,t−k2J ,t−(k+1)2J+1
, (13)

where

ε
(j)
t = x

(j)
t − PMj,t−2j

x
(j)
t =

√
2j

(∑2j−1−1
i=0 εt−i

2j−1
−
∑2j−1

i=0 εt−i
2j

)
(14)

and PM
j,t−2j

is a projection mapping onto the closed subspace Mj,t−2j spanned by
{
x
(j)

t−k2j

}
k∈Z

,

π
(J)

ε,t−k2J ,t−(k+1)2J+1
=
√

2J

∑t−k2J
i=t−(k+1)2J+1 εi

2J

 ,

with εt = xt − PMt−1xt satisfying V ar(εt) = 1,

aj,k = E
(
xt, ε

(j)

t−k2j

)
,

and

bj,k = E
(
xt, π

(J)

ε,t−k2J ,t−(k+1)2J+1

)
.

Again, Eq. (13) is a (form of) Wold representation which applies to each scale and, hence, to the

full process. Specifically, it explicitly describes any weakly-stationary time series of interest as a

linear combination of shocks classified on the basis of their arrival time as well as their scale. We

refer the reader to Wong (1993) for a similar decomposition. Appendix B shows formally that Eq.

(13) reduces to the classical Wold representation for weakly-stationary time series.12

12Ortu, Severino, Tamoni, and Tebaldi (2015) use the Abstract Wold Theorem to provide a set of characterization
theorems that classify the class of linear aggregation-decompositions schemes that can be achieved along these lines.
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It is important to remark that the expression in Eq. (13) is neither unique, nor economically-

motivated. Specifically, the expression hinges on the Haar filter. A different filter would give rise

to an alternative expression for π
(J)
t as well as for the low-frequency shocks ε

(j)
t as aggregates of

high-frequency shocks (c.f., Eq. (14)).

A crucial innovation of the approach advocated in this paper is to highlight that Eq. (13) (and,

given their equivalency, the classical Wold representation for weakly-stationary process) can, in

fact, be viewed as the result of restrictions on the shocks across scales. Eq. (14) is, in effect, a

restriction. Our preferred approach in Eq. (12), instead, frees up the shocks in order to generate

what we consider to be an economically-important separation between innovations - and information

- at different scales.

11 Further discussions and conclusions

Shocks to economic time series can be time-specific and, importantly for our purposes, frequency-

specific. We suggest that economic relations may apply to individual layers in the cascade of shocks

affecting the economy and be hidden by effects at alternative, higher frequencies. These layers, and

the frequency at which they operate, can be identified. In particular, the nature and the magnitude

of the existing, low-frequency, predictive relations can be studied.

To do so, this paper proposes direct extraction of the time-series details - and regressions on

the details - as well as indirect extraction by means of two-way aggregation of the raw series -

and regressions on forward/backward aggregates of the raw series. The mapping between the two

methods is established and their close relation is exploited empirically. While the direct method

allows one to identify, up to the customary estimation error, the data generating process (i.e., the

details and, upon reconstruction, the original series), the indirect method provides one with a rather

immediate way to evaluate the frequency at which layers in the information flow are connected across

economic variables and employ this information for prediction. By providing an alternative way

in which one may implement long-run predictability (aggregated regressand on past aggregated

regressor, rather than on past regressor over one period), two-way aggregation offers a natural way

to exploit scale-specific predictability (in asset allocation for the long run, for example). Using

both direct extraction of the details and aggregation, we supply strong evidence about the long-

run validity of certain predictive relations (risk-return trade-offs and Fisher’s hypothesis) typically
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found to be elusive when working with raw data at the highest frequency of observation.

The use of variance and inflation as predictors of asset returns is particularly appealing in our

framework because the corresponding backward-aggregated measures do not lose their economic

interpretation. Backward-aggregated variance and backward-aggregated inflation can readily be

interpreted as long-run past variance and long-run past inflation. Having made this point, alter-

native popular predictors, like the dividend-yield and other financial ratios, may also be employed.

While their long-run past averages are not as easily interpretable, the role played by aggregation in

the extraction of low-frequency information contained in the details applies generally. So does the

proposed approach to predictability. To the extent that market return data and the dividend-yield

- for instance - contain relevant information about long-run cash-flow and discount rate risks, re-

gressions on their details and on properly-aggregated data appear very well-suited to uncover this

information. We leave this issue for future work.
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Figure 1: Market Volatility. The left panels present scatter plots of forward aggregates of
excess market returns on backward aggregates of market variance for different levels of aggregation.
The right panels present scatter plots of components (details) of the same series corresponding to
analogous frequencies between one and two years (j = 1), two and four years (j = 2), and 8 and
16 years (j = 4), respectively. For a clear interpretation of the scales j = 1, 2, . . . into appropriate
time horizons, please refer to Table 1.
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Figure 2: Consumption Volatility. The left panels present scatter plots of forward aggregates
of excess market returns on backward aggregates of consumption variance for different levels of
aggregation. The right panels present scatter plots of components (details) of the same series
corresponding to analogous frequencies between one and two years (j = 1), two and four years (j =
2), and 8 and 16 years (j = 4), respectively. For a clear interpretation of the scales j = 1, 2, . . . into
appropriate time horizons, please refer to Table 1.
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(a) Time-scale decomposition for market returns

(b) Time-scale decomposition for market realized variance

Figure 3: Panel A displays the time-scale decomposition for the excess stock market returns. Panel
B displays the time-scale decomposition for market realized variance. Solid lines represent the
details, diamonds represent the decimated counterparts of the calendar-time details. For a clear
interpretation of the scales j = 1, 2, . . . into appropriate time horizons, please refer to Table 1.
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Figure 4: The upper panel in the figure displays the raw yearly series of market volatility (black-
asterisk line) and consumption volatility (red-circle line); the lower panel displays the details of the
two series with scale j = 4.
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Panel A: Panel B: Panel C:
Monthly calendar time Quarterly calendar time Annual calendar time

Time-scale Frequency resolution Frequency resolution Frequency resolution

j = 1 1− 2 months 1− 2 quarters 1− 2 years
j = 2 2− 4 months 2− 4 quarters 2− 4 years
j = 3 4− 8 months 1− 2 years 4− 8 years
j = 4 8− 16 months 2− 4 years 8− 16 years
j = 5 16− 32 months 4− 8 years 16− 32 years
j = 6 32− 64 months 8− 16 years > 32 years
j = 7 64− 128 months 16− 32 years

π
(7)
t > 128 > 32 years

Table 1: Interpretation of the time-scale (or persistence level) j in terms of time spans in the case of
monthly (Panel A), quarterly (Panel B) and annual (Panel C) time series. Each scale corresponds
to a frequency interval, or conversely an interval of periods, and thus each scale is associated with
a range of time horizons.

Panel A: Panel B: Panel C:
Market volatility Consumption volatility Market excess returns

Scales j = 1 2 3 4 1 2 3 4 1 2 3 4
1 0.28 -0.12 -0.03 0.29 0.10 -0.09 -0.04 -0.03 0.07

(0.13) (0.09) (0.06) (0.16) (0.09) (0.08) (0.09) (0.07) (0.06)
2 -0.05 0.01 0.06 -0.04 -0.14 0.13

(0.15) (0.10) (0.20) (0.12) (0.10) (0.10)
3 0.39 0.10 0.15

(0.11) (0.13) (0.13)

Table 2: Pairwise correlations. We report the pair-wise correlations between the individual
details of market variance (Panel A), Consumption variance (Panel B) and excess market returns
(Panel C). The pair-wise correlations are obtained by using redundant data on the details rather

than the decimated counterparts. Standard errors for the correlation between x
(j)
t and x

(j′)
t , j 6= j′,

are Newey-West with 2max(j,j
′) lags.
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Panel A1: (rt+1,t+h − rft) = αh + βhvt−h+1,t + εt+h

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

vt−h+1,t 0.13 0.10 -0.07 0.05 0.29 0.41 0.54 0.81 1.17 1.40
(0.57) (0.35) (-0.26) (0.17) (0.95) (1.68) (1.88) (2.30) (3.97) (6.51)

R2(%) [0.24] [0.24] [0.15] [0.07] [2.73] [10.00] [15.69] [19.80] [35.08] [45.88]

Panel A2: (rt+1,t+h − rft) = αh + βhvt−h+1,t + εt+h

Horizon h (in years)
11 12 13 14 15 16 17 18 19 20

vt−h+1,t 1.53 1.55 1.57 1.55 1.46 1.38 1.17 0.92 0.59 0.34
(8.86) (8.53) (9.17) (10.35) (9.77) (8.94) (7.68) (5.83) (4.61) (2.77)

R2(%) [50.39] [53.75] [59.58] [64.75] [63.57] [63.78] [53.68] [37.02] [16.05] [5.85]

Panel B: r
(j)

t+2j
− rf (j)

t+2j
= βjv

(j)
t + εt+2j

Time-scale j
1 2 3 4

v
(j)
t 0.87 0.25 0.48 1.16

[-1.11 3.48] [-1.53 3.18] [-2.10 4.14] [-0.19 2.89]

R2(%) [1.36] [2.42] [3.02] [56.13]

Panel C: v
(j)

t+2j
= ρjv

(j)
t + εt+2j

Time-scale j
1 2 3 4

v
(j)
t -0.15 -0.12 0.19 0.04

[-0.37 0.07] [-0.37 0.14] [-0.18 0.53] [-0.24 0.32]

R2(%) [7.50] [11.09] [21.31] [15.32]

Table 3: Market Volatility. Panel A: We run linear regressions (with an intercept) of h-period
continuously compounded market returns on the CRSP value-weighted index in excess of a 1-year
Treasury bill rate on h-period past market variance. For each regression, the table reports OLS
estimates of the regressors, Hansen and Hodrick corrected t-statistics in parentheses. Panel B:
results of componentwise predictive regressions of the components of excess stock market returns on
the components of market variance. Panel C: estimation results of the multiscale autoregressive
system. For each level of persistence j ∈ {1, . . . , 4}, we run a regression of the market variance

component v
(j)

t+2j
on its own lagged component v

(j)
t . For each regression, the table reports OLS

estimates of the regressors, highest posterior density region with probability .95 (under a mildly
informative prior) in parentheses and adjusted R2 statistics in square brackets. The sample is
annual and spans the period 1930-2013. For the translation of time-scales into appropriate range
of time horizons refer to Table 1.
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Panel A1: (rt+1,t+h − rft) = αh + βhvt−h+1,t + εt+h

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

vt−h+1,t 2.05 2.22 0.38 -0.04 0.04 1.70 3.34 3.72 4.89 6.01
(1.06) (1.69) (0.32) (-0.04) (0.03) (1.16) (2.63) (2.70) (3.94) (5.19)

R2(%) [1.54] [3.37] [0.16] [0.00] [0.00] [4.46] [17.71] [22.51] [33.59] [46.59]

Panel A2: (rt+1,t+h − rft) = αh + βhvt−h+1,t + εt+h

Horizon h (in years)
11 12 13 14 15 16 17 18 19 20

vt−h+1,t 6.59 6.90 6.68 6.57 6.10 5.76 5.10 4.20 3.02 1.71
(5.32) (5.75) (5.54) (6.56) (6.92) (7.63) (8.11) (7.25) (5.04) (2.69)

R2(%) [53.95] [60.40] [60.89] [61.87] [57.74] [56.93] [50.78] [38.21] [21.17] [7.72]

Panel B: r
(j)

t+2j
− rf (j)

t+2j
= βjv

(j)
t + ε

(j)

t+2j

Time-scale j
1 2 3 4

v
(j)
t 5.01 -5.05 1.12 4.76

[-1.20 5.83] [-2.40 5.17] [-1.70 5.56] [-0.93 6.06]

R2(%) [5.79] [14.35] [10.91] [56.00]

Panel C: v
(j)

t+2j
= ρjv

(j)
t + ε

(j)

t+2j

Time-scale j
1 2 3 4

v
(j)
t -0.11 0.19 -0.03 0.15

[-0.26 0.17] [-0.02 0.47] [-0.14 0.11] [0.04 0.29]

R2(%) [3.87] [9.97] [35.10] [55.87]

Table 4: Consumption Volatility. Panel A: We run linear regressions (with an intercept) of
h-period continuously compounded market returns on the CRSP value-weighted index in excess
of a 1-year Treasury bill rate on h-period past consumption variance vt−h,t. For each regression,
the table reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in
parentheses. Panel B: results of componentwise predictive regressions of the components of excess
stock market returns on the components of consumption variance v2j,t. Panel C: estimation results
of the multiscale autoregressive system. For each level of persistence j ∈ {1, . . . , 4}, we run a

regression of the consumption variance component v
(j)

t+2j
on its own lagged component v

(j)
t . For

each regression, the table reports OLS estimates of the regressors, highest posterior density region
with probability .95 (under a mildly informative prior) in parentheses and adjusted R2 statistics
in square brackets. The sample is annual and spans the period 1930-2013. For the translation of
time-scales into appropriate range of time horizons refer to Table 1.
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Panel A: yt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t -0.01 -0.03 -0.09 -0.28 -0.10 0.43 0.71 0.67 0.44 0.18 0.04 -0.01
(-0.13) (-0.38) (-0.96) (-2.42) (-0.80) ( 4.40) ( 8.19) ( 7.61) ( 4.47) ( 1.54) (0.36) (-0.05)

Adj.R2 [0.18] [0.48] [1.64] [7.19] [2.18] [16.86] [43.06] [38.83] [17.59] [4.44] [1.74] [2.22]

Panel B: yt+1,t+h = αh + βhxt+1,t+h + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt+1,t+h -0.00 -0.01 -0.02 -0.06 -0.14 -0.26 -0.34 -0.33 -0.21 -0.09 -0.03 -0.01
(0.00) (-0.07) (-0.21) (-0.57) (-1.16) (-1.85) (-2.32) (-2.26) (-1.64) (-0.78) (-0.27) (-0.07)

Adj.R2 [0.21] [0.51] [1.08] [2.45] [4.57] [8.36] [12.55] [11.57] [6.63] [3.46] [2.56] [ 2.47]

Table 5: Simulation under the null of scale-dependent predictability. The relation is
at scale j∗ = 6. We simulate excess market returns (y) and market variance (x) under the

assumption of predictability at scale j∗ = 6. We simulate x
(j)
t = ρjx

(j)

t−2j + ε
(j)
t for j = 6 and

x
(j)
t = ε

(j)
t otherwise. We implement 500 replications. We set T = 1024. For each regression, the

table reports OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in
parentheses and adjusted R2 statistics in square brackets. Panel A: We run linear regressions (with
an intercept) of h-period continuously compounded excess market returns on h-period past realized
market variances. Panel B: contemporaneous aggregation. We run linear regressions (with an
intercept) of h-period continuously compounded excess market returns on h-period realized market
variances.

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00
(0.01) (-0.03) (0.04) (0.06) (0.03) (0.01) (0.01) (0.02) (0.00) (-0.06) (-0.08) (-0.07)

Adj.R2 [0.14] [0.29] [0.74] [1.48] [1.70] [1.96] [1.78] [1.94] [2.26] [2.08] [2.34] [2.24]

Table 6: Simulation under the null of ABSENCE of scale-dependent predictability. We
simulate excess market returns (y) and market variance (x) under the assumption of no predictabil-

ity. We simulate x
(j)
t = ρjx

(j)

t−2j + εt,j for j = 6 and x
(j)
t = ε

(j)
t otherwise. We implement 500

replications. We set T = 1024. We then run linear regressions (with an intercept) of h-period
continuously compounded excess market returns on h-period past realized market variances. For
each regression, the table reports OLS estimates of the regressors, Newey-West t-statistics with
2*(horizon-1) lags in parentheses and adjusted R2 statistics in square brackets.
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Panel A: yt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t -0.00 -0.01 -0.02 -0.07 -0.15 -0.22 -0.21 -0.08 0.14 0.35 0.49 0.58
(-0.01) (-0.09) (-0.21) (-0.61) (-1.21) (-1.63) (-1.48) (-0.54) ( 1.05) ( 2.92) (4.43) ( 5.39)

Adj.R2 [ 0.20] [ 0.45] [ 1.01] [ 2.17] [ 4.51] [7.57] [7.38] [3.78] [5.40] [15.39] [27.94] [37.25]

Panel B: yt+1,t+h = αh + βhxt+1,t+h + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt+1,t+h 0.00 0.00 -0.00 -0.01 -0.02 -0.04 -0.06 -0.10 -0.15 -0.19 -0.24 -0.27
(0.04) (0.01) (-0.03) (-0.08) (-0.14) (-0.28) (-0.48) (-0.74) (-0.97) (-1.20) (-1.44) (-1.64)

Adj.R2 [0.24] [0.58] [1.20] [2.30] [3.30] [4.40] [5.55] [6.87] [8.21] [9.66] [11.46] [13.33]

Table 7: Simulation under the null of scale-dependent predictability. The relation is
at scale j∗ = 7. We simulate excess market returns (y) and market variance (x) under the

assumption of predictability at scale j∗ = 7. We simulate x
(j)
t = ρjx

(j)

t−2j + ε
(j)
t for j = 7 and

x
(j)
t = ε

(j)
t otherwise. We implement 500 replications. We set T = 1024. For each regression, the

table reports OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in
parentheses and adjusted R2 statistics in square brackets. Panel A: We run linear regressions (with
an intercept) of h-period continuously compounded excess market returns on h-period past realized
market variances. Panel B: contemporaneous aggregation. We run linear regressions (with an
intercept) of h-period continuously compounded excess market returns on h-period realized market
variances.
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Panel A - Data: rt+1,t+h = αh + βh∆hπt−h+1,t + εt+h

Horizon h (in months)
1 2 3 4 5 6 7 8 9 10

∆hπt−h+1,t -0.66 0.37 -0.32 -1.59 -0.25 0.25 0.50 0.80 1.04 1.45
(-0.83) (0.45) (-0.45) (-2.73) (-0.41) (0.44) (0.84) (1.43) (2.47) (5.53)

Adj.R2 [0.39] [0.33] [0.37] [8.84] [0.26] [0.40] [2.07] [6.52] [12.82] [27.53]

Panel B - Simulation: rt+1,t+h = αh + βh∆hπt−h+1,t + εt+h

Horizon h (in months)
1 2 3 4 5 6 7 8 9 10

∆hπt−h+1,t 0.11 0.15 -0.67 -1.22 -0.39 0.65 1.16 1.32 1.23 0.99
( 0.31) ( 0.58) (-2.49) (-4.93) (-1.63) ( 1.80) ( 4.30) ( 4.43) ( 4.33) ( 3.85)

Adj.R2 [0.27] [ 0.48] [ 7.27] [23.79] [ 2.98] [ 3.90] [21.36] [28.09] [24.40] [16.16]

Table 10: Forward on past differenced backward. Panel A: data. We run linear regressions
(with an intercept) of h-period continuously compounded nominal market returns on h-period past
differenced inflation. Panel B: simulation We simulate market returns and inflation under the
assumption of predictability at scale j∗ = 3. We simulate x

(j)
t = ρjx

(j)

t−2j + εt,j for j = 3 and

x
(j)
t = εt,j otherwise. We implement 500 replications. We set T = 128. For each regression, the

table reports OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in
parentheses and adjusted R2 statistics in square brackets.
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Appendix

A Filtering

This Appendix provides a concise introduction to the extraction procedure for the details.
Let {xt−i}i∈Z be a time series of interest. Consider the case J = 1. We have

xt =
xt − xt−1

2︸ ︷︷ ︸
x
(1)
t

+

[
xt + xt−1

2

]
︸ ︷︷ ︸

π
(1)
t

,

which effectively amounts to breaking the series down into a ”transitory” and a ”persistent” com-
ponent. Set, now, J = 2. We obtain

xt =
xt − xt−1

2︸ ︷︷ ︸
x
(1)
t

+

[
xt + xt−1 − xt−2 − xt−3

4

]
︸ ︷︷ ︸

x
(2)
t

+

[
xt + xt−1 + xt−2 + xt−3

4

]
︸ ︷︷ ︸

π
(2)
t

,

which further separates the persistent component π
(1)
t into an additional ”transitory” and an addi-

tional ”persistent” component.
The procedure can, of course, be iterated yielding a general expression for the generic detail

x
(j)
t , i.e.,

x
(j)
t =

∑2(j−1)−1
i=0 xt−i

2(j−1)
−
∑2j−1

i=0 xt−i
2j

= π
(j−1)
t − π(j)t ,

where the element π
(j)
t satisfies the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)
t−2j−1

2
.

In essence, for every t, {xt−i}i∈Z can be written as a collection of details x
(j)
t with different de-

grees of resolution (i.e., calendar-time persistence) along with a low-resolution approximation π
(J)
t .

Equivalently, it can be written as a telescopic sum

xt =
J∑
j=1

{
π
(j−1)
t − π(j)t

}
︸ ︷︷ ︸

x
(j)
t

+ π
(J)
t = π

(0)
t , (A.1)

in which the details are naturally viewed as changes in information between scale 2j−1 and scale 2j .
The scales are dyadic and, therefore, enlarge with j. The higher j, the lower the level of resolution.

In particular, the innovations x
(j)
t = π

(j−1)
t −π(j)t become smoother, and more persistent in calendar

time, as j increases. As discussed in the main text, the representation in Eq. (A.1) is especially
useful when discussing aggregation.
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A.1 Decimation

Decimation is the process of defining non-redundant information, as contained in a suitable number
of non-overlapping “typical” points, in the observed details. Referring back to Figure 1 and Figure
2, the panels on the right-hand side are constructed from these ”typical” points and, therefore, only
contain essential information about the corresponding scale.

Let us now return to the case J = 2, as in the example above, but similar considerations apply
more generally. Define the vector

Xt = [xt, xt−1, xt−2, xt−3]
ᵀ

and consider the orthogonal Haar transform matrix

T (2) =


1
4

1
4

1
4

1
4

1
4

1
4 −1

4 −1
4

1
2 −1

2 0 0
0 0 1

2 −1
2

 .

It is easy to see that T (2)(T (2))> is diagonal and

T (2)Xt =
[
π
(2)
t , x

(2)
t , x

(1)
t , x

(1)
t−2

]ᵀ
.

By letting time t vary in the set
{
t = k22 with k ∈ Z

}
one can now define (from T (2)Xt) the

decimated counterparts of the calendar-time details, namely
{
x
(j)
t , t = k2j with k ∈ Z

}
for j = 1, 2

and
{
π
(2)
t , t = k22 with k ∈ Z

}
. Mallat (1989) provides a recursive algorithm for the general case

with J not necessarily equal to 2.13

The separation of a time series in terms of details with different levels of resolution is conducted
using wavelets as in Multiresolution Analysis (see, e.g., Mallat (1989), Dijkerman and Mazumdar
(1994), Yazici and Kashyap (1997)). Wavelets analysis has been widely employed to study economic
and financial time series (we refer to the comprehensive treatments in Ramsey (1999), Percival and
Walden (2000), Gençay, Selçuk, and Whitcher (2001), and Crowley (2007) for discussions and
references). Our use of multiresolution filters is, however, solely intended to facilitate extraction
of scale-specific information. As emphasized, differently from the existing economic literature on
wavelets, and its reliance on traditional time-series representations of the Wold type, once extracted,
the components are thought to be driven by time and scale-specific shocks. In light of our discussion
in the main text, the proposed data generating process is key to justify the reported results and the
novel notion of scale-specific predictability introduced in this paper.

13In general, we can use the components x
(j)
t , j = 1, .., J , and π

(J)
t in their entirety to reconstruct the time series

using (A.1). This is the redundant decomposition of a time series proposed in Renaud, Starck, and Murtagh (2005).
Alternatively, one can reconstruct the time series signal from the decimated components using the (inverse of the)
Haar unitary matrix, see Appendix C.
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B The classical Wold representation as a restriction on a general-
ized (time/scale) Wold representation

We begin with

xt =
J∑
j=1

∞∑
k=0

aj,kε
(j)

t−k2j +
∞∑
k=0

bJ,kπ
(J)

ε,t−k2J ,t−(k+1)2J+1
,

where all the terms were defined in Section 1.
Consider the case J = 2 and the interval [t, t− 7]. We have

xt = a1,0ε
(1)
t + a1,1ε

(1)
t−2 + a1,2ε

(1)
t−4 + a1,3ε

(1)
t−6 + ...+

+a2,0ε
(2)
t + a2,1ε

(2)
t−4 + ...+

+b2,0π
(2)
ε,t,t−3 + b2,1π

(2)
ε,t−4,t−7 + . . .

Now, recall that

ε
(j)
t =

√
2j

(∑2j−1−1
i=0 εt−i

2j−1
−
∑2j−1

i=0 εt−i
2j

)
.

Then,

a1,0 = E
(
xt, ε

(1)
t

)
= E

(
xt,

εt√
2
− εt−1√

2

)
=
ψ0√

2
− ψ1√

2

a1,1 = E
(
xt, ε

(1)
t−2

)
= E

(
xt,

εt−2√
2
− εt−3√

2

)
=
ψ2√

2
− ψ3√

2

a1,2 = E
(
xt, ε

(1)
t−4

)
= E

(
xt,

εt−4√
2
− εt−5√

2

)
=
ψ4√

2
− ψ5√

2

a1,3 = E
(
xt, ε

(1)
t−6

)
= E

(
xt,

εt−6√
2
− εt−7√

2

)
=
ψ6√

2
− ψ7√

2

...

a2,0 = E
(
xt, ε

(2)
t

)
= E

(
xt,

εt + εt−1
2

− εt−2 + εt−3
2

)
=
ψ0

2
+
ψ1

2
− ψ2

2
− ψ3

2

a2,1 = E
(
xt, ε

(2)
t−4

)
= E

(
xt,

εt−4 + εt−5
2

− εt−6 + εt−7
2

)
=
ψ4

2
+
ψ5

2
− ψ6

2
− ψ7

2

...

b2,0 = E
(
xt, π

(2)
ε,t,t−3

)
=
ψ0

2
+
ψ1

2
+
ψ2

2
+
ψ3

2

b2,1 = E
(
xt, π

(2)
ε,t−4,t−7

)
=
ψ4

2
+
ψ5

2
+
ψ6

2
+
ψ7

2
...

with
ψj = E(xt, εt−j).
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Finally, notice that

ψ0

(
1√
2
ε
(1)
t +

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ0εt

ψ1

(
− 1√

2
ε
(1)
t +

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ1εt−1

ψ2

(
1√
2
ε
(1)
t−2 −

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ2εt−2

ψ3

(
− 1√

2
ε
(1)
t−2 −

1

2
ε
(2)
t +

1

2
π
(2)
ε,t,t−3

)
= ψ3εt−3

ψ4

(
1√
2
ε
(1)
t−4 +

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ4εt−4

ψ5

(
− 1√

2
ε
(1)
t−4 +

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ5εt−5

ψ6

(
1√
2
ε
(1)
t−6 −

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ6εt−6

ψ7

(
− 1√

2
ε
(1)
t−6 −

1

2
ε
(2)
t−4 +

1

2
π
(2)
ε,t−4,t−7

)
= ψ7εt−7,

which yields the standard Wold representation:

xt = ψ0εt + ψ1εt−1 + ψ2εt−2 + . . .

C Understanding two-way aggregation

C.1 Dynamics of time-scale components

Consider the following component (or detail) dynamics for j = j∗, where j∗ ∈ {1, . . . , J}:

y
(j)

t+2j
= βjx

(j)
t (C.1)

x
(j)

t+2j
= ρjx

(j)
t + σjεt+2j (C.2)

For j = 1, . . . , J , with j 6= j∗, we have

y
(j)
t = 0, (C.3)

x
(j)
t = 0. (C.4)
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Assume - for conciseness - that T = 16, j∗ = 2, and J = 3. Arrange the details of x as follows:

π
(3)
8 π

(3)
16

x
(3)
8 x

(3)
16

x
(2)
8 x

(2)
16

x
(2)
4 x

(2)
12

x
(1)
8 x

(1)
16

x
(1)
6 x

(1)
14

x
(1)
4 x

(1)
12

x
(1)
2 x

(1)
10


(C.5)

and, analogously, for the details of y. Consider the following isometric transform matrix:

T (3) =



1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8
− 1√

8
− 1√

8
− 1√

8
− 1√

8
1
2

1
2 −1

2 −1
2 0 0 0 0

0 0 0 0 1
2

1
2 −1

2 −1
2

1√
2
− 1√

2
0 0 0 0 0 0

0 0 1√
2
− 1√

2
0 0 0 0

0 0 0 0 1√
2
− 1√

2
0 0

0 0 0 0 0 0 1√
2
− 1√

2


. (C.6)

To reconstruct the time series xt, we run through each column of the matrix (C.5) and, for each
column, we perform the following operation:

X
(3)
8 =



x8
x7
x6
x5
x4
x3
x2
x1


=
(
T (3)

)−1



π
(3)
8

x
(3)
8

x
(2)
8

x
(2)
4

x
(1)
8

x
(1)
6

x
(1)
4

x
(1)
2


(C.7)
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and

X
(3)
16 =



x16
x15
x14
x13
x12
x11
x10
x9


=
(
T (3)

)−1



π
(3)
16

x
(3)
16

x
(2)
16

x
(2)
12

x
(1)
16

x
(1)
14

x
(1)
12

x
(1)
10


. (C.8)

We do the same for the details of yt. The matrix
(
T (3)

)−1
takes the following form:

(
T (3)

)−1
=



1√
8

1√
8

1
2 0 1√

2
0 0 0

1√
8

1√
8

1
2 0 − 1√

2
0 0 0

1√
8

1√
8
−1

2 0 0 1√
2

0 0
1√
8

1√
8
−1

2 0 0 − 1√
2

0 0
1√
8
− 1√

8
0 1

2 0 0 1√
2

0
1√
8
− 1√

8
0 1

2 0 0 − 1√
2

0
1√
8
− 1√

8
0 −1

2 0 0 0 1√
2

1√
8
− 1√

8
0 −1

2 0 0 0 − 1√
2


. (C.9)

Using the dynamics of the state (C.2), (C.7) and (C.8), we obtain

X
(3)
16 =



x16 = x
(2)
16 /2

x15 = x
(2)
16 /2

x14 = −x(2)16 /2

x13 = −x(2)16 /2

x12 = x
(2)
12 /2

x11 = x
(2)
12 /2

x10 = −x(2)12 /2

x9 = −x(2)12 /2


(C.10)

and

X
(3)
8 =



x8 = x
(2)
8 /2

x7 = x
(2)
8 /2

x6 = −x(2)8 /2

x5 = −x(2)8 /2

x4 = x
(2)
4 /2

x3 = x
(2)
4 /2

x2 = −x(2)4 /2

x1 = −x(2)4 /2


. (C.11)
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C.2 Aggregation

C.2.1 Fitting an AR(1) process to the regressor

Given the assumed data-generating process in scale time, we fit an AR(1) process in calendar time
to xt:

xt+1 = ρ̃xt + εt+1.

From (C.10) and (C.11), it is easy to see that, for j∗ = 2:

ρ̃ =
1− ρj∗

4
.

For a more general j∗, i.e., if the process for xt is given by (C.2) and (C.4), then

ρ̃ =

1 + 1 + . . .︸ ︷︷ ︸
2j∗−1−1

−1 + 1 + 1 + . . .︸ ︷︷ ︸
2j∗−1−1

−ρj∗

2j∗
.

This result clarifies the relation between scale-wise persistence (ρj∗) and persistence in calendar
time (ρ̃). If ρj∗ < 1− 4

2j∗+1
, then ρ̃ > ρj∗ for all j∗. However, as j∗ grows large, ρ̃ approximates 1.

In other words, the largest the driving scale, the largest the calendar-time correlation irrespective
of the actual scale-wise correlation.

C.2.2 Two-way (forward/backward) regressions

Let us construct the temporally-aggregated series

yt+1,t+h =

h∑
i=1

yt+i

and run the forward/backward regression

yt+1,t+h = β̃xt−h+1,t + εt+1,t+h,
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where xt+1,t+h is defined like yt+1,t+h. For h = 4, and using (C.1) and (C.3) together with (C.10)
and (C.11), we have

y13,16 = 0 x13,16 = 0

y12,15 = (−y(2)16 + y
(2)
12 )/2 = β

(
−x(2)12 + x

(2)
8

)
/2 x12,15 = (−x(2)16 + x

(2)
12 )/2

y11,14 = −y(2)16 + y
(2)
12 = β

(
−x(2)12 + x

(2)
8

)
x11,14 = −x(2)16 + x

(2)
12

y10,13 = (−y(2)16 + y
(2)
12 )/2 = β

(
−x(2)12 + x

(2)
8

)
/2 x10,13 = (−x(2)16 + x

(2)
12 )/2

y9,12 = 0 x9,12 = 0

y8,11 = (−y(2)12 + y
(2)
8 )/2 = β

(
−x(2)8 + x

(2)
4

)
/2 x8,11 = (−x(2)12 + x

(2)
8 )/2

y7,10 = −y(2)12 + y
(2)
8 = β

(
−x(2)8 + x

(2)
4

)
x7,10 = −x(2)12 + x

(2)
8

y6,9 = (−y(2)12 + y
(2)
8 )/2 = β

(
−x(2)8 + x

(2)
4

)
/2 x6,9 = (−x(2)12 + x

(2)
8 )/2

y5,8 = 0 x5,8 = 0

y4,7 = (−y(2)8 + y
(2)
4 )/2 = β

(
−x(2)4 + x

(2)
0

)
/2 x4,7 = (−x(2)8 + x

(2)
4 )/2

y3,6 = −y(2)8 + y
(2)
4 = β

(
−x(2)4 + x

(2)
0

)
x3,6 = −x(2)8 + x

(2)
4

y2,5 = (−y(2)8 + y
(2)
4 )/2 = β

(
−x(2)4 + x

(2)
0

)
/2 x2,5 = (−x(2)8 + x

(2)
4 )/2

y1,4 = 0 x1,4 = 0.

Thus, regressing yt+1,t+4 on xt−3,t yields β̃ = β with R2 = 100%. Hence, when scale-wise pre-
dictability applies to a scale operating between 2j

∗−1 and 2j
∗
, maximum predictability upon two-

way aggregation arises over an horizon h = 2j
∗
. In our case, j∗ = 2 and h = 4. Consider, for
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example, an alternative aggregation level: h = 2. We have

y15,16 = y
(2)
16 = βx

(2)
12 x15,16 = x

(2)
16

y14,15 = 0 x14,15 = 0

y13,14 = −y(2)16 = −βx(2)12 x13,14 = −x(2)16

y12,13 = (−y(2)16 + y
(2)
12 )/2 = β(−x(2)12 + x

(2)
8 )/2 x12,13 = (−x(2)16 + x

(2)
12 )/2

y11,12 = y
(2)
12 = βx

(2)
8 x11,12 = x

(2)
12

y10,11 = 0 x10,11 = 0

y9,10 = −y(2)12 = −βx(2)8 x9,10 = −x(2)12

y8,9 = (−y(2)12 + y
(2)
8 )/2 = β(−x(2)8 + x

(2)
4 )/2 x8,9 = (−x(2)12 + x

(2)
8 )/2

y7,8 = y
(2)
8 = βx

(2)
4 x7,8 = x

(2)
8

y6,7 = 0 x6,7 = 0

y5,6 = −y(2)8 = −βx(2)4 x5,6 = −x(2)8

y4,5 = (−y(2)8 + y
(2)
4 )/2 = β(−x(2)4 + x

(2)
0 )/2 x4,5 = (−x(2)8 + x

(2)
4 )/2

y3,4 = y
(2)
4 = βx

(2)
0 x3,4 = x

(2)
4

y2,3 = 0 x2,3 = 0

y1,2 = −y(2)4 = −βx(2)0 x1,2 = −x(2)4 ,

where we use the implied dynamics for x, see equations (C.10) and (C.11), and the equivalent
ones for y together with (C.1) and (C.2). The regression of yt+1,t+2 on xt−1,t yields (based on a
fundamental block of four elements):

β̃ =
Cov(y15,16, x13,14) + Cov(y13,14, x11,12)

V ar (x10,11) + V ar (x11,12) + V ar (x12,13) + V ar (x13,14)

=
−βV ar

(
x
(2)
12

)
ρ− βV ar

(
x
(2)
12

)
V ar

(
x
(2)
12

)
+ V ar

(
x
(2)
16
2

)
+ V ar

(
x
(2)
12
2

)
−

Cov
(
x
(2)
16 ,x

(2)
12

)
2 + V ar

(
x
(2)
16

)
= −2β

(1 + ρj)

5− ρj

and, hence, an inconsistent slope estimate. This estimate could have a changed sign (with respect
to β) and be drastically attenuated. In fact, β̃ = 0 if ρj = −1 and β̃ = −β if ρj = 1.

C.2.3 Contemporaneous aggregation

We now run the contemporaneous regression

yt+1,t+h = β̃xt+1,t+h + εt+1,t+h.
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For h = 4, the relevant 4-term block contains terms like:

yt+1,t+h = β(−x(2)12 + x
(2)
8 )/2

xt+1,t+h = (−x(2)16 + x
(2)
12 )/2

By taking covariances we obtain

β̃ = β

(
−Var(x

(2)
12 ) + ρj Var(x

(2)
12 )− ρ2j Var(x

(2)
12 ) + ρj Var(x

(2)
12 )
)

Var(x
(2)
16 ) + Var(x

(2)
12 )− 2cov(x

(2)
16 , x

(2)
12 )

= β

(
−1 + 2ρj − ρ2j

)
2(1− ρj)

= −β (1− ρj)
2

.

Again, β̃ 6= β. Its sign is also incorrect. We note that, in this case, β̃ = 0 if ρj = 1 and β̃ = −β if
ρj = −1. The R2 is equal to

R2 =
β̃2 Var

(
−x(2)12 + x

(2)
8

)
β2 Var

(
−x(2)12 + x

(2)
8

) =

(
1− ρj

2

)2

.

The larger ρj , the smaller the R2, and the more attenuated towards zero β̃ is.

C.2.4 Two-way (forward/backward) regressions on differences

Consider the regression

yt+1,t+h = β̃ (xt−h+1,t − xt−2h+1,t−h) + εt+1,t+h.

Using the same methods as before, one can show that, if h = 2:

β̃h=2 = −β
2

and R2
h=2 =

1

2

[7 + ρj ]

[5− ρj ]
.

If h = 3:

β̃h=3 = β

[ [
9
4 −

5
4ρj
]

9− 15
2 ρj + 1

2ρ
2
j

]
and R2

h=3 =

[ [
9
4 −

5
4ρj
]

9− 15
2 ρj + 1

2ρ
2
j

]2 [9− 15
2 ρj + 1

2ρ
2
j

]
3− 2ρj

.

If h = 1:

β̃h=1 =
β

2

[
1 + 3ρj
3 + ρj

]
and

R2
h=1 =

1

4

[
1 + 3ρj
3 + ρj

]2 [3 + ρj
2

]
.
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Hence, when scale-wise predictability applies to a scale operating between 2j
∗−1 and 2j

∗
, two-way

aggregation on differences, rather than on levels, would yield - at h = 2j
∗−1 - a slope coefficient

whose sign is the opposite of the true sign. In our case, j∗ = 2 and h = 2. As shown, β̃h=2 = −β
2 .

We note that R2
h=2 = 1 if ρj = 1. Also, R2

h=2 reaches a minimum value of 0.5 for ρj = −1. Hence,
the magnitude of the coefficient of determination is sizeable in correspondence with h = 2. In
addition, R2

h=2 > R2
h=1 and R2

h=2 > R2
h=3 for all ρ, thereby leading to a tent-shaped behavior of

the R2s around h = 2.

D Predicting long-run variance

Bandi and Perron (2008) find that, in spite of its predictive ability for long-run (i.e., forward-
aggregated) excess market returns, long-run past (backward-aggregated) variance does not predict
its future values. As emphasized by Bandi and Perron (2008), if taken literally, this result would
contradict classical economic logic behind predictability. Why is realized variance aggregated over
a certain horizon not predictable? We provide a justification based on measurement error.

In Section 8.1 we simulated models in which realized variance was characterized by autoregressive
components at scales j∗ = 6 or j∗ = 7, respectively. Let us now focus on the variance dynamics
given these specifications. Table D.1–Panels A and B report simulation results from running linear
regressions of h-period realized market variances. We regress h-period future variance v2t+1,t+h =∑h

i=1 v
2
t+i−1,t+i on h-period past variance v2t−h+1,t =

∑h
i=1 v

2
t−i+1,t−i, i.e.,

v2t+1,t+h = ρhv
2
t−h+1,t + εt,t+h, (D.1)

when the underlying data generating processes have predictable scales at j∗ = 6 or j∗ = 7. It is
readily verified that both of these scales generate spurious negative predictability upon aggrega-
tion with (approximate) peaks corresponding to the upper bound of the corresponding interval of
frequencies.

Thus, empirical evidence of some (negative) long-run variance predictability appears to be an
additional diagnostic for the proposed data generating process relying on details. Having made this
point, we note that the findings in Table D.1–Panel A and Table D.1–Panel B are at odds with the
findings in Table D.2.14

Next, we show that this apparent contradiction is easily re-solved by taking into account mea-
surement error generated by heterogeneity in the levels of persistence. More explicitly, we evaluate
the effect on the dynamics of aggregated variance of the presence of uncorrelated predictable com-
ponents at different frequencies. To this extent, we simulate variance according to the following
specifications:

v
2(j)

k2j+2j
= ρjv

2(j)

k2j
+ ε

(j)

k2j+2j

with j = j∗ ∈ S = {7, 9} and

v
2(j)

k2j+2j
= ε

(j)

k2j+2j

for j /∈ S, j = 1, . . . , J = 9, where corr(ε
(j′)
t′ , ε

(j
t )) = 0 ∀t, j, t′, j′ with t′ 6= t and j′ 6= j. Hence, we

now consider a variance process generated by two autoregressive details, one at scale 7 and one at

14Table 9 of Bandi and Perron (2008) also report estimates from a linear regression of realized variance on itself h
periods in the past. Bandi and Perron (2008) show that “the autocorrelations become quickly statistically insignificant
with the level of aggregation” and conclude that “realized variance is virtually uncorrelated in the long run.”

57



Panel A - case j∗ = 6: xt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.24 0.13 0.06 -0.26 -0.43 -0.47 -0.48 -0.48 -0.49 -0.49 -0.48 -0.48
(5.30) (2.10) (0.66) (-2.56) (-4.04) (-4.57) (-3.68) (-3.80) (-4.34) (-3.96) (-4.04) (-3.59)

Adj.R2 [5.89] [2.16] [1.19] [7.78] [18.99] [23.20] [24.95] [24.64] [25.28] [25.67] [24.18] [24.82]

Panel B - case j∗ = 7: xt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.31 0.24 0.22 -0.00 -0.19 -0.32 -0.40 -0.44 -0.45 -0.46 -0.46 -0.47
(6.89) (4.02) (2.77) (-0.06) (-1.62) (-2.52) (-2.91) (-3.12) (-3.31) (-3.36) (-3.28) (-3.16)

Adj.R2 [9.77] [6.37] [5.80] [1.38] [5.09] [12.03] [18.10] [20.59] [21.67] [22.67] [24.06] [25.61]

Table D.1: Simulation under the null of scale-dependent predictability. We run linear
regressions of h-period realized market variances xt+1,t+h on h-period past realized market variances
xt−h+1,t. We implement 500 replications. We set T = 1024. For each regression, the table reports
OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in parentheses and

adjusted R2 statistics in square brackets. Panel A: We simulate x
(j)
t = ρjx

(j)

t−2j + ε
(j)
t for j = 6

and x
(j)
t = ε

(j)
t otherwise. Panel B. We simulate x

(j)
t = ρjx

(j)

t−2j + ε
(j)
t for j = 7 and x

(j)
t = ε

(j)
t

otherwise.

Horizon h (in months)
1 2 3 4 5 6 7 8 9 10

v2t−h,t 0.47 0.34 0.33 0.28 0.21 0.20 0.23 0.20 0.13 0.05

(5.05) (4.08) (2.46) (1.83) (1.37) (1.06) (1.15) (0.99) (0.70) (0.26)

Adj.R2 [17.35 ] [13.08] [10.39] [6.53] [4.31] [4.83] [6.73] [4.67] [1.73] [0.19]

Table D.2: Market Volatility. We run linear regressions of h-period realized market variances
v2t+1,t+h on h-period past realized market variances v2t−h+1,t. The table reports OLS estimates of
the regressors, Hansen and Hodrick corrected t-statistics in parentheses. The sample is annual
and spans the period 1930-2012. For the translation of time-scales into appropriate range of time
horizons refer to Table 1.
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scale 9.
Table D.3–Panel C reports the results. Comparing these findings with the ones in Table D.1-

Panel B, we note that the effect of adding an additional predictable detail (relatively close to the
permanent one) is two-fold. First, the autoregressive coefficient at horizon h = 120 is no longer
significant and aggregate “realized variance is virtually uncorrelated in the long run,” even though
two autoregressive details are truly present. Second, the t-statistics and the R2 for very short
horizons, namely 3 months and 6 months, are now higher and significant.

This said, the previous conclusions about long-run predictability continue to hold. Earlier, we
postulated a predictable relation between returns and realized variance only at scale j∗ = 7. In
other words, the variance process had only one predictable component. We now consider a case in
which there are two details of the variance process which are not white noise (j = {7, 9}). However,
we continue to impose that the only relevant predictability relation between returns and variance
occurs at j∗ = 7. Thus, we assume

r
(j)

k2j ,k2j+2j
=

{
v
2(j)

k2j
if j = 7,

u
(j)
t otherwise .

Results are reported in Table D.3–Panel A. We confirm the findings of the previous section, namely
the relation at scale j∗ = 7 implies a spike in the slope estimates, t-statistics, and R2s at the horizon
h = 120. Compared to Table 7–Panel A, we note that, when the variance process is characterized
by two autoregressive components, Table D.3–Panel A shows that the estimated (upon aggregation)
predictive relation is softened but continues to remain significant.

E Computation of the Highest Posterior Density Intervals

Consider, again, the linear regression model:

y
(j)

k2j+2j
= βjx

(j)

k2j
+ ε

(j)

k2j+2j
.

Suppose that the coefficient βj can lie anywhere in the interval (−∞,∞). A 95% credible interval
for βj is any interval [a; b] so that:

p(a ≤ βj ≤ b | y(j)) =

∫ b

a
p(βj | y(j))dβj = 0.95.

To choose among the infinite number of credible intervals, it is common to select the one with the
smallest area. In the standard Normal example, [−1.96; 1.96] is the shortest credible interval. This
is the Highest Posterior Density Interval (HPDI). Each table presents 95% HPDIs in addition to
point estimates. In simple words, the researcher is 95% sure that βj lies within the HPDI.

Given the structure of the above regression, we employ a Normal-Gamma prior (i.e., the product
of a Gamma and a conditional Normal) for βj and z = 1

σ2 :

βj , z ∼ NG(β, V , s−2, ν).

We use under-bars (e.g., β) to denote the parameters of the prior density and over-bars (e.g., β)
to denote the parameters of the posterior density. The marginal posterior distribution for βj is a
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Panel A: yt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t -0.00 -0.01 -0.02 -0.09 -0.19 -0.26 -0.23 -0.09 0.11 0.28 0.39 0.43
(-0.01) (-0.10) (-0.25) (-0.69) (-1.34) (-1.80) (-1.59) (-0.61) ( 0.81) ( 2.23) ( 3.27) ( 3.94)

Adj.R2 [0.17] [0.38] [0.86] [2.03] [4.62] [8.07] [7.83] [3.73] [4.72] [13.01] [22.75] [28.79]

Panel B: yt+1,t+h = αh + βhxt+1,t+h + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt+1,t+h 0.00 0.00 -0.00 -0.01 -0.02 -0.04 -0.06 -0.10 -0.13 -0.16 -0.19 -0.21
(0.05) (0.02) (-0.02) (-0.08) (-0.15) (-0.28) (-0.45) (-0.69) (-0.89) (-1.10) (-1.30) (-1.48)

Adj.R2 [0.21] [0.51] [1.06] [2.09] [3.09] [4.02] [4.95] [6.07] [7.26] [8.56] [10.12] [11.86]

Panel C: xt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.24 0.15 0.17 0.20 0.15 0.03 -0.05 -0.07 -0.07 -0.07 -0.09 -0.12
(5.27) (2.46) (2.21) (1.84) (1.16) (0.19) (-0.37) (-0.54) (-0.59) (-0.60) (-0.66) (-0.78)

Adj.R2 [7.35] [3.78] [3.20] [3.40] [6.79] [7.71] [8.52] [8.61] [8.08] [7.32] [6.39] [5.31]

Table D.3: Simulation under the null of scale-dependent predictability. The relation is at
scale j∗ = 7. Two persistent components in the regressor. We simulate excess market returns
(y) and market variance (x) under the assumption of predictability at scale j∗ = 7. We simulate

x
(j)
t = ρjx

(j)

t−2j + ε
(j)
t for j = 7, 9 and x

(j)
t = ε

(j)
t otherwise. We implement 500 replications. We

set T = 1024. For each regression, the table reports OLS estimates of the regressors, Newey-West
t-statistics with 2*(horizon-1) lags in parentheses and adjusted R2 statistics in square brackets.
Panel A: We run linear regressions (with an intercept) of h-period continuously compounded
excess market returns on h-period past realized market variances. Panel B: contemporaneous
aggregation. We run linear regressions (with an intercept) of h-period continuously compounded
excess market returns on h-period realized market variances. Panel C: . We run linear regressions
of h-period realized market variances xt+1,t+h on h-period past realized market variances xt−h+1,t.
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t-distribution:
βj | y(j) ∼ t(β, s2V , ν).

The prior hyper-parameter values are s−2 = 1
V ar(y) , ν = 3, and β = 1. Since

V ar(βj) =
νs2

ν − 2
V ,

setting V ar(βj) = 10 for both risk-return trade-offs and Fisher effects implies a choice of V as well.
We use the same prior density for all scales j = 1, . . . , J .

We wish to attach little weight on to the prior. We do so by setting ν to a value which is
considerably smaller than the number of observations N . Since, in the case of the risk-return trade-
offs, N = 64, setting ν = 3 is relatively uninformative. We also attach a large prior variance to each
of the regression coefficients. Because V ar(βj) = 10, we are giving an approximately 95% prior
probability to the region [−2

√
(10), 2

√
(10)] for βj , which translates into a wide interval.

Overall, the selected prior is considerably less informative than the data. This can be seen from
figure E.1 (i.e., the prior p.d.f. is more dispersed than the likelihood) - both for the case of stock
returns and consumption risk - see Figure 1(a) - and for the case of nominal stock returns and
inflation - see Figure 1(b).

In order to construct HPDIs for the Autoregressive AR(1) model for the variance, i.e.,

v
2(j)

k2j+2j
= ρjv

2(j)

k2j
+ ε

(j)

k2j+2j

we assign prior distributions as follows:

• ρj ∼ 2φ− 1, where φ ∼ Beta(a, b)

• z = 1/σj ∼ Gamma(s−2, ν)

Again, we set uninformative priors. Naturally, the parameter ρj should be less than 1 in order for
the process to be stationary. We use the beta distribution (which is, however, more informative than
the uniform distribution)15 and choose a = 5 and b = 2. We run a Random Walk Chain Metropolis-
Hastings algorithm with 20,000 iterations to estimate the mean-reverting AR(1) model. We select
independent normal proposal distributions to sample candidate points for the parameters. We
choose the variance-covariance matrix of the multivariate Normal so that the acceptance probability
tends to be neither too high nor too low. In particular, we make sure that the average acceptance
probability is in the region 0.2 to 0.5.

F Data

The empirical analysis in Sections 7, and 9 is conducted using annual data on consumption, inflation,
stock returns, and short-term interest rates from 1930 to 2013, i.e., the longest available sample. We
take the view that this sample is the most representative of the overall high/medium/low-frequency
variation in asset prices and macroeconomic data.

Aggregate consumption is from the Bureau of Economic Analysis (BEA), series 7.1, and is
defined as consumer expenditures on non-durables and services. Growth rates are constructed by

15It is known that U[0,1] is equivalent to Beta(1,1). The latter has values in the range of (0,1) with mean and
standard deviation of 0.5 and 0.289, respectively.

61



(a) Prior and posteriors for market returns and consumption
volatility

(b) Prior and posteriors for nominal market returns and inflation

Figure E.1: The figure displays the marginal prior (dashed line) and posteriors for βj . Panel A
displays the case for the excess stock market returns and consumption risk at scale j = 4, and Panel
B the relation between of nominal stock returns and inflation at scale j = 3.
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taking the first difference of the corresponding logarithmic series. Our measure of consumption
volatility is based on modeling consumption growth as following an AR(1)-GARCH(1,1), as in
Bansal, Khatchatrian, and Yaron (2005).

For yearly inflation, we use the seasonally unadjusted CPI from the Bureau of Labor Statistics.
Yearly inflation is the logarithmic (December to December) growth rate in the CPI.

We use the NYSE/Amex value-weighted index with dividends as our market proxy, Rt+1. Return
data on the value-weighted market index are obtained from the Chicago Center for Research in
Security Prices (CRSP). The nominal short-term rate (Rf,t+1) is the annualized yield on the 3-
month Treasury bill taken from the CRSP treasury files.

The h-horizon continuously-compounded excess market return is calculated as rt+1,t+h = ret+1 +
. . .+ret+h, where ret+j = ln(Rt+j)− ln(Rf,t+j) is the 1-year excess logarithmic market return between
dates t+ j − 1 and t+ j, Rt+j is a simple gross return, and Rf,t+j is a gross risk-free rate (3-month
Treasury bill).

The market’s realized variance between the end of period t and the end of period t+n, a measure
of integrated volatility, is obtained by computing

v2t,t+n =

tD∑
d=t1

r2d,

where [t1, tD] denotes the sample of available daily returns between the end of period t and the end
of period t+ n, and rd is the market’s logarithmic return on day d.
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