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This paper considers bootstrap inference in a factor-augmented regression context where the errors 

could potentially be serially correlated. This generalizes results in Gonçalves and Perron (2013) and 

makes the bootstrap applicable to forecasting contexts where the forecast horizon is greater than one. 

We propose and justify two residual-based approaches, a block wild bootstrap (BWB) and a dependent 

wild bootstrap (DWB). Our simulations document improvement in coverage rates of confidence 

intervals for the coefficients when using BWB or DWB relative to both asymptotic theory and the wild 

bootstrap when serial correlation is present in the regression errors. 
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1 Introduction

Factor-augmented regressions have become quite popular in research in finance and economics since

the seminal paper of Stock and Watson (2002). They are often used in a forecasting context as they

allow to summarize a large number of predictors with a small number of indexes.

Because these indexes are treated as latent factors in an approximate factor model, the estimated

regression contains estimated regressors which poses challenges for inference. Under regularity condi-

tions, Bai and Ng (2006) derived the asymptotic distribution of regression estimates. One of the key

conditions used in their work is that
√
T/N → 0. In that case, the error in estimating the factors can

be neglected and inference can proceed as if they were observed.

Gonçalves and Perron (2014) (GP (2014) thereafter) showed that the finite sample properties of the

asymptotic approach of Bai and Ng (2006) can be poor, especially if N is not suffi ciently large relative

to T . In particular, estimation of factors leads to an asymptotic bias term in the OLS estimator

if
√
T/N → c and c 6= 0. They provided a set of high level conditions under which any residual-

based bootstrap method is valid in this context and showed that a bootstrap algorithm based on the

wild bootstrap removes this bias and outperforms the asymptotic approach of Bai and Ng (2006) in

∗We are grateful for comments from seminar participants at the Toulouse School of Economics, Pompeu Fabra
University and Duke University, as well as from participants at the Workshop on Bootstrap Methods for Time Series,
Copenhagen, Denmark, September 2013, and the MAESG conference in Emory, Atlanta, November 2013. Gonçalves
acknowledges financial support from the NSERC and MITACS whereas Perron acknowledges financial support from the
SSHRC and MITACS.
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simulation experiments. This wild bootstrap algorithm is only valid when the forecasting horizon is

one because it does not reproduce serial correlation. In general, when the forecasting horizon is larger

than one and the model is correctly specified, the residuals in the factor-augmented regression will

follow a moving average process (Diebold (2007), pp. 256-257).

In this paper, we extend the work of Bai and Ng (2006) and GP (2014) by considering errors that

are serially correlated. Bai and Ng effectively ruled out possible serial correlation since their estimator

of the asymptotic variance of the scaled average of the scores is only consistent with heteroskedasticity.

We begin by providing an asymptotic theory under general assumptions on the serial correlation of the

error term (of the strong mixing type) and proposing a consistent estimator of the covariance matrix

in that case. As in GP (2014), we allow
√
T/N → c > 0 so that a bias term appears in the asymptotic

distribution. Secondly, we propose two residual-based bootstrap schemes and show that they provide

valid inference in this context. The first scheme which we call the block wild bootstrap (BWB) was

proposed by Yeh (1998) for a linear regression with fixed scalar regressor and strong mixing errors. It

is implemented by separating the residuals into non-overlapping blocks of observations and multiplying

the elements of each block by the same realization of an external variable. The fact that each element

in a block is multiplied by the same external draw generates correlation among the elements within a

block but enforces independence across blocks. The second scheme we consider is the dependent wild

bootstrap (DWB) originally proposed by Shao (2010) in the context of the smooth function model

with time series observations. The DWB differs from the BWB by smoothing the external draws

across blocks. Our main contribution is to show that these two methods are valid in the context of a

factor augmented regression model with estimated factors and serially correlated errors, characterized

by a strong mixing assumption.

The remainder of the paper is organized as follows. Section 2 introduces our assumptions, provides

the asymptotic distribution of the OLS estimator, and proposes a consistent estimator of the covariance

matrix. Section 3 considers bootstrap inference using our two proposed algorithms. Section 4 presents

our simulation experiments, and Section 5 concludes. Mathematical proofs appear in the Appendix.

2 Assumptions and asymptotic results

We consider the following standard factor-augmented regression model,

yt+h = α′Ft + β′Wt + εt+h, t = 1, . . . , T − h,

where yt+h denotes the variable of interest, for example GDP growth or inflation, with h the forecast

horizon. The r × 1 vector Ft consists of latent factors which help forecast yt+h. These are thought as

common latent factors in a panel factor model given by

Xit = λ′iFt + eit, i = 1, . . . , N, t = 1, . . . , T,
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where λi, i = 1, . . . , N, are the r×1 factor loadings and eit is an idiosyncratic error term, i = 1, . . . , N,

t = 1, . . . , T . The vector Wt contains a smaller set of other observed regressors (including for instance

a constant and lags of yt). We will denote the set of regressors as zt =
(
F ′t ,W

′
t

)′
, t = 1, . . . , T .

We impose the following assumptions. Throughout, ‖M‖ =
(
trace

(
M ′M

))1/2 denotes the Euclid-
ean norm, M > 0 denotes positive definiteness for a square matrix, and C represents a generic finite

constant.

Assumption 1 (factor model)

a) E ‖Ft‖4 ≤ C and ΣF = lim
T→∞

E
(
T−1F ′F

)
= lim

T→∞
E

(
T−1

T∑
t=1

FtF
′
t

)
> 0.

b) ‖λi‖ ≤ C if λi are deterministic, or E ‖λi‖ ≤ C if not, and N−1Λ′Λ = N−1
N∑
i=1

λiλ
′
i →P ΣΛ > 0.

c) The eigenvalues of the r × r matrix (ΣF × ΣΛ) are distinct.

Assumption 2 (Idiosyncratic errors)

a) E (eit) = 0, E |eit|8 ≤ C.

b) E (eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s) and |σij,ts| ≤ τ st for all (i, j) with N−1
N∑

i,j=1

σij ≤ C,

T−1
T∑

t,s=1

τ st ≤ C and (NT )−1
∑

i,j,t,s=1

|σij,ts| ≤ C.

c) E

∣∣∣∣∣N−1/2
N∑
i=1

(eiteis − E (eiteis))

∣∣∣∣∣
4

≤ C for all (t, s) .

Assumption 3 (Moments and weak dependence among {zt}, {λi}, and {eit})

a) E

N−1
N∑
i=1

∥∥∥∥∥T−1/2
T∑
t=1

Fteit

∥∥∥∥∥
2
 ≤ C, where E (Fteit) = 0 for every (i, t) .

b) For each t, E

∥∥∥∥∥(NT )−1/2
T∑
s=1

N∑
i=1

zs (eiteis − E (eiteis))

∥∥∥∥∥
2

≤ C where zs =
(
F ′s,W

′
s

)′
.

c) E

∥∥∥∥∥(NT )−1/2
T∑
t=1

zte
′
tΛ

∥∥∥∥∥
2

≤ C where E
(
ztλ
′
ieit
)

= 0 for all (i, t) .

d) E

T−1
T∑
t=1

∥∥∥∥∥N−1/2
N∑
i=1

λiet

∥∥∥∥∥
2
 ≤ C where E (λieit) = 0 for all (i, t) .
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e) As N,T → ∞, (NT )−1
T∑
t=1

N∑
i=1

N∑
j=1

λiλ
′
jeitejt − Γ →P 0, where Γ ≡ lim

N, T→∞
T−1

T∑
t=1

Γt > 0, and

Γt ≡ V ar
(
N−1/2

N∑
i=1

λieit

)
.

Assumption 4 (Weak dependence betwen εt+h and eit)

a) For each t and h ≥ 0, E

∣∣∣∣∣(NT )−1/2
T∑
s=1

N∑
i=1

εs+h (eiteis − E (eiteis))

∣∣∣∣∣ ≤ C.
b) E

∥∥∥∥∥(NT )−1/2
T−h∑
t=1

λieitεt+h

∥∥∥∥∥
2

≤ C where E (λieitεt+h) = 0 for all (i, t, h) .

Assumption 5 (Moments and dependence of the score vector) For some r > 2,

a) E (ztεt+h) = 0, E ‖zt‖2r < C and E
(
ε2r
t+h

)
< C.

b)
{(
z′t, εt+h

)}
is a fourth order stationary strong mixing sequence of size − 2r

r − 2
.

c) Σzz = lim
T→∞

E

(
T−1

T∑
t=1

ztz
′
t

)
> 0.

d) Ω = lim
T→∞

V ar

(
T−1/2

T−h∑
t=1

ztεt+h

)
> 0.

Assumptions 1-4 are identical to those of GP (2014) whereas Assumption 5 contains the fundamen-

tal difference. We replace the high level central limit theorem assumption of GP (2014, cf. Assumption

5(c)) by more primitive assumptions that allow us to show consistency of the bootstrap in this con-

text. Specifically, we impose a strong mixing assumption on
(
z′t, εt+h

)
and require the existence of

slightly more than four finite moments for these random variables (which is a strengthening of the

moment conditions used by GP (2014)). Under these assumptions, we can show that a central limit

theorem holds for the regression scores (using the latent factors), thus verifying Assumption 5 of GP

(2014). Our strong mixing assumption allows for quite general serial dependence, including the class

of stationary ARMA processes. This is the case even when h = 1, where the condition E (ztεt+h) = 0

imposes further restrictions on the form of serial correlation in εt when zt contains a lagged dependent

variable (e.g. it rules out an AR(1) model for εt) but does not eliminate it.

To estimate the factor-augmented regression, it is necessary to use an estimator of the latent factors

Ft. It is well known that factor models suffer from a lack of identification. As shown by Bai (2003),

the principal component F̃t is only consistent for a rotation of Ft, denoted by HFt, where H denotes

the associated rotation matrix. Bai showed that the rotation matrix H is given by

H = Ṽ −1 F̃
′F

T

Λ′Λ

N
, (1)
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where Ṽ is a r× r diagonal matrix with the r largest eigenvalues of XX ′/NT , in decreasing order on
the diagonal.

It is useful to rewrite the model as

yt+h = ẑ′δ + α′H−1
(
HFt − F̃t

)
+ εt+h,

where δ′ =
(
α′H−1 β′

)
and ẑ′t =

(
F̃ ′t ,W

′
t

)
. The consequence of the lack of identification of the

factor model is that the coeffi cients associated with the estimated factors are rotated versions of those

associated with the true latent factors. Bai and Ng (2013) provide three sets of conditions under which

H0 = p limH = diag (±1). Under those conditions, α will be identified up to sign.

The OLS estimator from regressing yt+h on F̃t and Wt is given by

δ̂ =
(
α̂′, β̂

′)′
=

(
T−h∑
t=1

ẑtẑ
′
t

)−1 T−h∑
t=1

ẑtyt+h,

and it will be such that δ̂ →P δ ≡
(
α′H−1 β′

)′
under our assumptions. We denote Φ0 ≡

diag (H0, I). The following theorem provides the asymptotic distribution of the OLS estimator. The

proof is in the Appendix.

Theorem 2.1 Under Assumptions 1-5, if

√
T

N
→ c <∞, as N,T →∞, then

√
T
(
δ̂ − δ

)
→d N (−c∆δ,Σδ) ,

with Σδ = Φ′−1
0 Σ−1

zz ΩΣ−1
zz Φ−1

0 , and

∆δ =
(
Φ0ΣzzΦ

′
0

)−1
(

ΣF̃ + V ΣF̃V

ΣWF̃V ΣF̃V
−1

)(
H−1

0

)′
α

where ΣWF̃ = p lim

(
W ′F̃

T

)
, ΣF̃ = V −1QΓQ′V −1, Q = p lim

F̃ ′F

T
, and V = p lim Ṽ .

Theorem 2.1 follows from Theorem 2.1 of GP (2014), where the asymptotic normality of the OLS

estimator was obtained under a high level CLT assumption on the regression scores. Instead, here

we allow dependence of unknown form by assuming a mixing condition on the regressors and on the

regression errors. This primitive condition will be useful to establish the consistency of the BWB and

DWB in Section 3, as well as the consistency of a HAC estimator of Ω, as we prove next. Note that

under this mixing condition, Ω is not necessarily of the form Ω = E
(
ztz
′
tε

2
t+h

)
assumed by Bai and

Ng (2006).

To carry out inference or construct prediction intervals, a consistent covariance estimator of Σδ is

required. As we allow for serial correlation in the score, a HAC estimator of Σδ is appropriate,

Σ̂δ =
(
T−1ẑ′ẑ

)−1
Ω̂
(
T−1ẑ′ẑ

)−1

5



with

Ω̂ = Ξ̂0 +

T−h−1∑
j=1

k

(
j

MT

)[
Ξ̂j + Ξ̂′j

]
,

where Ξ̂j =
1

T

T−h−j∑
t=1

ẑtẑ
′
t+j ε̂t+hε̂t+h+j is the autocovariance matrix of the scores, k (·) is a kernel

function, and MT is a bandwidth.

To prove consistency of this estimator, restrictions must be placed on the kernel function k (·) and
bandwidth MT . We will consider kernels in the family K1 as in Andrews and Monahan (1992):

K1=

 k (·) : R→ [−1, 1] , k (0) = 1, k (x) = k (−x) for x ∈ R,
∫ +∞

−∞
|k (x)| dx <∞,

k (·) is continuous at 0 and at all but a finite number of points

 .

In addition, we must strengthen Assumptions 3 and 5. Specifically, we require:

Assumption 3’

d) E

T−1
T∑
t=1

∥∥∥∥∥N−1/2
N∑
i=1

λiet

∥∥∥∥∥
4
 ≤ C where E (λieit) = 0 for all (i, t) .

Assumption 5’For some r > 2,

a) E (ztεt+h) = 0, E ‖zt‖4r < C and E
(
ε4r
t+h

)
< C.

b)
{(
z′t, εt+h

)}
is a fourth order stationary strong mixing sequence of size − 3r

r − 2
.

The other parts of these two assumptions remain as before. By strengthening Assumption 5.a)

by Assumption 5’.a) we have that E ‖ztεt+h‖2r < C, which is suffi cient for the proof of our next

result. Assumption 5’is analogous to the assumptions made in Andrews (1991, Lemma 1) to prove

consistency of the HAC estimator.

Lemma 2.1 Suppose that Assumptions 1-5, with Assumptions 3 and 5 strengthened by Assumptions

3’ and 5’ respectively, hold. Suppose further that k (·) belongs to the set K1 and that MT → ∞ as

T →∞ such that
MT

T

2

→ 0. If

√
T

N
→ c <∞ as N, T →∞, then Σ̂δ →P Σδ.

This lemma shows that a HAC covariance estimator is consistent for Σδ despite the presence of

estimated regressors. This implies that, as in Bai and Ng (2006), asymptotic inference can be carried

out as if the factors were observed if
√
T/N → 0 since in that case, the asymptotic distribution of

√
T
(
δ̂ − δ

)
is centered at 0. If

√
T/N → c > 0, Lemma 2.1 shows that HAC estimation is still possible,

but inference is complicated by the need to account for the bias term in the asymptotic distribution.

As in GP (2014), we consider the bootstrap to accomplish this in the next section.
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3 Bootstrap inference

3.1 General residual-based bootstrap: review

In this section, we consider bootstrap inference on the coeffi cients of the factor-augmented regression.

The proposed bootstrap scheme resamples the idiosyncratic and regression residuals separately and

is similar to the one in GP (2014) with the difference that in the second step, residuals {ε̂t+h} are
resampled by either the block wild bootstrap or the dependent wild bootstrap. As usual, we will

denote with asterisks quantities in the bootstrap world. We will also denote by E∗ (and V ar∗) the

expectation (and variance) under the bootstrap measure P ∗.

Bootstrap algorithm

1. For t = 1, . . . , T , generateX∗t = Λ̃F̃t+e
∗
t , where {e∗it} is a resampled version of

{
ẽit = Xit − λ̃

′
iF̃t

}
.

In this step, we use the wild bootstrap and set

e∗it = ẽit · ηit, i = 1, . . . , N, t = 1, . . . , T

where ηit is an i.i.d. draw (over i and t) from an external random variable with mean 0 and

variance 1.

2. Estimate the bootstrap factors
{
F̃ ∗t : t = 1, . . . , T

}
by principal components using X∗.

3. For t = 1, . . . , T−h, generate y∗t+h = α̂′F̃t+β̂
′
Wt+ε

∗
t+h, where the error term ε∗t+h is a resampled

version of ε̂t+h. In this step, we will use either the block wild bootstrap or the dependent wild

bootstrap as detailed below to accommodate serial correlation in εt+h.
1

4. Regress y∗t+h generated in step 3 on the bootstrap estimated factors F̃
∗
t obtained in step 2 and

on the observed regressors Wt and obtain the OLS estimator δ̂
∗
,

δ̂
∗

=

(
T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1 T−h∑
t=1

ẑ∗t y
∗
t+h, where ẑ∗t =

(
F̃ ∗′t ,W

′
t

)′
.

5. Repeat steps 1-4 B times.

As in the sample, the principal component estimator in the bootstrap consistently estimates the

space of factors only. The specific rotation that is estimated is given by the bootstrap analogue of the

H matrix,

H∗ = Ṽ ∗−1 F̃
∗′F̃

T

Λ̃′Λ̃

N
,

where Ṽ ∗ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of
X∗X∗′/NT , in decreasing order. Note that contrary to H, which depends on unknown population

1When Wt includes lagged values of the dependent variable, it is also possible to generate y
∗
t+h recursively as in

y∗t+h = α̂′F̃t + β̂y∗t + ε∗t+h, t = 1, . . . , T − h. Simulation results did not show any noticeable improvements from doing
this, so we concentrate on a fixed-design scheme which allows for a unified treatment of Wt.
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parameters, H∗ is fully observed. Using the results in Bai and Ng (2013) , H∗ converges asymptotically

to a diagonal matrix with +1 or −1 on the main diagonal, see GP (2014) for more details.

The consequence of this lack of identification is that the bootstrap OLS estimator estimates δ∗ =(
α̂′H∗−1 β̂

′)′
=
(
Φ∗−1

)′
δ̂ which is different from δ̂. GP (2014) suggested using a rotated version of

this estimator, δ̃
∗

= Φ∗′δ̂
∗
for bootstrap inference, and we will do the same here.

The next assumption is a modified version of Assumptions 6-8 in GP (2014) applied to our context.

Assumption 6

a) λi are either deterministic such that ‖λi‖ ≤ C <∞, or stochastic such that E ‖λi‖12 ≤ C <∞ for

all i, and E ‖Ft‖12 ≤ C <∞.

b) E |eit|
12

≤ C <∞, for all (i, t) and E (eitejs) = 0, if i 6= j.

c) zt and εt+h are independent of eis for all (i, t, s).

Assumption 6.b) excludes cross-sectional dependence among idiosyncratic errors as in Assumption

8 of GP (2014). This is required because we use the wild bootstrap in step 1 of the bootstrap algorithm

which destroys such dependence. We could relax this assumption if we were willing to assume that
√
T/N → 0 as in Bai and Ng (2006). In that case, the bias term of the OLS estimator is 0, and this

is the only quantity that depends on the properties of the idiosyncratic errors asymptotically. In that

situation, factor estimation error does not matter asymptotically, and the key condition for bootstrap

validity is to replicate the properties of the regression errors εt+h, as we are doing here with our two

proposed blocking methods.

We now consider the two bootstrap schemes to generate ε∗t+h in step 3 of this algorithm.

3.2 Block wild bootstrap

The first scheme we consider is the block wild bootstrap (BWB) first proposed by Yeh (1998) and

analyzed in other contexts by Shao (2011) and Urbain and Smeekes (2013).

First, we form non-overlapping blocks of size bT of consecutive residuals. For simplicity, we assume

that (T − h) /bT = kT , where kT is an integer and denotes the number of blocks of size bT . For

l = 1, . . . , bT and j = 1, . . . , kT , we let

y∗(j−1)bT+l+h = α̂′F̃(j−1)bT+l + β̂
′
W(j−1)bT+l + ε∗(j−1)bT+l+h, (2)

where

ε∗(j−1)bT+l+h = ε̂(j−1)bT+l+h · νj

and νj is an external random variable with mean 0, variance 1, and independent and identically

distributed across blocks. In other words, the bootstrap data is obtained by multiplying each residual
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by an external variable that is the same for all observations within a block. The next theorem shows

the consistency of the bootstrap based on the rotated version of the OLS estimator, Φ∗′δ̂
∗
.

Theorem 3.1 Under the same assumptions as in Lemma 2.1, assuming E∗ |ηit|4 ≤ C < ∞, for all

(i, t), and E∗ |νj |4q ≤ C <∞, j = 1, . . . , kT , for some q > 1, if

√
T

N
→ c <∞ and bT →∞ such that

b2T
T
→ 0, as N,T →∞, then sup

x∈Rdim(δ)

∣∣∣P ∗ (√T (Φ∗′δ̂
∗ − δ̂

)
≤ x

)
− P

(√
T
(
δ̂ − δ

)
≤ x

)∣∣∣→P 0.

3.3 Dependent wild bootstrap

In this section, we consider the dependent wild bootstrap as an alternative to the block wild bootstrap.

The dependent wild bootstrap was proposed by Shao (2010) and differs from the BWB by the fact

that the draws of the external variable are smoothed across observations. The DWB is implemented

by multiplying each residual by a variable which is a local weighted average of external draws. The

local weighting makes neighboring observations dependent, and this explains why it is valid under

serial correlation. More formally, the DWB observations are obtained as

ε∗t+h = ε̂t+h · w∗t+h,

where w∗t+h is the typical element of a vector w
∗ of length T − h of random draws with mean 0 and

covariance matrix K, with typical element Kij = E∗
(
w∗i · w∗j

)
= kdwb

(
j − i
lT

)
, with kdwb (·) a kernel

function and lT a bandwidth parameter. Following Shao (2010, Assumption 2.1), we assume that w∗

is lT -dependent. In our simulations, we set w∗ = K1/2w, where w ∼ N (0, IT−h). Because the choices

of kernel and bandwidth used to construct the DWB observations do not need to coincide with the

choices of kernel and bandwidth used to construct the HAC estimator, we use different notations here.

We make the same assumptions as for the BWB with the addition of the following restriction on

the class of kernels.

Assumption 7 kdwb : R → [0, 1] is symmetric with compact support on [−1, 1] , kdwb (0) = 1,

lim
x→0
{1− kdwb (x)} / |x|q 6= 0 for some q ∈ (0, 1] such that ψ (ξ) =

1

2π

∫ +∞

−∞
kdwb (x) eiξxdx ≥ 0

for all ξ ∈ R.

The condition ψ (ξ) ≥ 0 ensures that the matrix K is positive definite (see Shao (2010)). These

assumptions are satisfied by the Bartlett and Parzen kernels but not for the truncated, quadratic

spectral and the Tukey-Hanning kernels (see Andrews (1991), Davidson and De Jong (2000) and Shao

(2010)).

The following theorem justifies the dependent wild bootstrap for inference on δ.

Theorem 3.2 Under the same assumptions as in Lemma 2.1 and Assumption 7, and assuming

E∗ |ηit|4 ≤ C < ∞, E∗ |w∗t |
2r ≤ C < ∞, for some r > 2, if

√
T

N
→ c < ∞ and lT → ∞ such
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that T−1l
2(r+1)/r
T → 0, as N,T →∞, then

sup
x∈Rdim(δ)

∣∣∣P ∗ (√T (Φ∗′δ̂
∗ − δ̂

)
≤ x

)
− P

(√
T
(
δ̂ − δ

)
≤ x

)∣∣∣→P 0.

This result is the DWB analog of Theorem 3.1 for the BWB. Both theorems allow us to use these

two methods for constructing percentile confidence intervals using the bootstrap. In order to construct

percentile-t intervals (Hall, 1992), we need a consistent estimator of the variance of
√
T
(

Φ∗′δ̂
∗ − δ̂

)
to define studentized statistics. This estimator is given by Φ∗′Σ̂∗δΦ

∗, where

Σ̂∗δ =
(
T−1ẑ∗′ẑ∗

)−1
Ω̂∗
(
T−1ẑ∗′ẑ∗

)−1
,

with Ω̂∗ being a HAC estimator

Ω̂∗ = Ξ̂∗0 +
T−h∑
j=1

k∗
(

j

M∗T

)[
Ξ̂∗j + Ξ̂∗′j

]
where k∗ (·) and M∗T denote the kernel function and the bandwidth parameter used in the bootstrap

HAC estimator and Ξ̂∗j =
1

T

T−h−j∑
t=1

ẑ∗t ẑ
∗′
t+j ε̂

∗
t+hε̂

∗
t+h+j .

The consistency of Σ̂∗δ is formalized in the next lemma.

Lemma 3.1 Suppose the assumptions of Theorems 3.1 and 3.2 hold for the DWB and the BWB,

respectively. Let k∗ (·) belong to the set K1 and M∗T → ∞ as T → ∞ such that
M∗2T
T
→ 0. If

√
T

N
→ c <∞ as N,T →∞, then Σ̂∗δ →P ∗ Σ∗δ ≡

(
Φ∗′0
)−1

Σδ (Φ∗0)−1 , in probability.

This result implies the consistency of the bootstrap distribution of the studentized statistic for

any given coeffi cient and justifes the construction of symmetric or equal-tailed percentile-t confidence

intervals.

4 Simulation results

In this section, we report results of a simulation experiment to document the properties of the bootstrap

inference procedures above. Our design follows Gonçalves, Perron, and Djogbenou (2013) closely. We

consider a single factor model,

yt+h = αFt + εt+h,

where α = 1 and Ft is an AR(1) process, Ft = 0.8Ft−1 + ut, with ut drawn for a normal distribution

with mean 0 and variance 1− (0.8)2 independently over time.

We consider three possibilities for the error term εt+h. In the first two designs, we set h = 1 or

12, and let the error term follow an MA(h− 1) as is appropriate if the forecasting model is correctly

specified. In each case, following Cheng and Hansen (2013), the MA process is εt+h =
h−1∑
j=0

(0.8)j vt+h−j ,
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and vt ∼ N

0,

h−1∑
j=0

(0.8)2j

−1 so that εt+h has variance 1. Finally, in the last design, we set h = 1

and generate εt+h from an AR(1) process, εt+h = .8εt+h−1 + vt+h, with vt+h drawn for a normal with

expectation 0 and variance
(
1− .82

)
. This design is plausible for cases where the forecasting model is

dynamically misspecified.

As in Gonçalves, Perron, and Djogbenou (2013), the (T ×N) matrix of panel variables is generated

as,

Xit = λiFt + eit,

where λi is drawn from a U [0, 1] distribution (independent across i) and eit is heteroskedastic but

independent over i and t. The variance of eit is drawn from U [.5, 1.5] for each i.

We consider asymptotic and bootstrap confidence intervals at a nominal level of 95% for the

regression coeffi cient. Asymptotic inference is conducted using a HAC estimator with a quadratic

spectral kernel and with bandwidth selected by the data-based rule from Andrews (1991), both in the

original sample and in the bootstrap samples. We consider three bootstrap schemes for generating

ε∗t+h in step 3 of our algorithm: the wild bootstrap, the block wild bootstrap with block size equal

to the integer part of the bandwidth choice in the sample, and the dependent wild bootstrap with

Bartlett kernel and bandwidth equal to the one selected in the sample.

We consider two values for each of N and T, 50 and 100, so that we have a total of four sample

sizes. For all our bootstrap schemes, we let ηit ∼ N (0, 1) .Moreover, for the BWB, we let νj ∼ N (0, 1)

whereas we let w∗ = K1/2w, with w ∼ N (0, IT−h) for the DWB. We set the number of replications to

5,000 and the number of bootstrap to 399.

Table 1 reports our simulation results. We report coverage rates of confidence intervals, the bias of

the estimators, the length of the confidence intervals, and the bandwidth choices made in the sample

and in the bootstrap.

The first set of results are coverage rates of the confidence intervals. We report results for the OLS

estimator, the OLS estimator if we did not have to estimate the factors, and six bootstrap intervals.

We report coverage rates of symmetric-t and equal-tailed-t intervals for the wild bootstrap (WB),

the block wild bootstrap (BWB) and dependent wild bootstrap (DWB). Remember that the wild

bootstrap is not valid with serial correlation.

The results for the first DGP are similar to those of GP (2014). The OLS estimator suffers

from severe undercoverage. These distortions come from the presence of a bias associated with the

estimation of the factor. This is illustrated in two ways: first, the OLS estimator with the true

factor has coverage much closer to the nominal level, and second, the bias results show that the OLS

estimator is biased (downward) when the factor must be estimated (and this bias goes down with N

and T ), while the estimator is essentially unbiased when we use the true factor.

The bootstrap is successful in removing this bias and providing more reliable inference. Whereas
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coverage is only 57% with N = T = 50 for asymptotic theory, symmetric bootstrap intervals have

a coverage rate of about 87% and equal-tailed intervals about 89%. As N and T increase, coverage

rates approach their nominal levels. With this design, all three bootstrap methods are asymptotically

valid, and we see only small differences among them.

It is interesting to note that the equal-tailed intervals are much shorter than the symmetric in-

tervals. This is because the sampling distribution of the OLS estimator is shifted to the left, and

imposing symmetry around 0 is inappropriate in this case and entails a cost. We also see that the

equal-tailed intervals provide slightly better coverage than the symmetric ones.

Many of the same features are reproduced in the other two designs. The OLS estimator is still

biased due to the estimation of the factor, but the effect on coverage is not as dramatic as the bias

of the estimator is unaffected but its variance increases. Thus, the t-statistic is less shifted to the left

than in the first design, and the overall effect is that coverage improves. We do see the effect of serial

correlation on the deterioration of inference for the OLS estimator with the true factor.

In the last two designs, we see differences among bootstrap methods. The wild bootstrap does

not reproduce serial correlation and leads to intervals with lower coverage rates with equal-tailed

intervals. On the other hand, we see little difference with the symmetric-t intervals. The fact that the

wild bootstrap does not reproduce serial correlation is highlighted by the selected bandwidths. The

selected bandwidth in the wild bootstrap is similar to the selected bandwidth when the data was i.i.d

in the first design. The selected bandwidth in the BWB and DWB are lower than in the sample but

large enough to capture some of the serial correlation in the bootstrap errors. Moreover, the dependent

wild bootstrap provides slightly better coverage than the BWB. However, contrary to the first design,

the symmetric intervals provide much better coverage than the equal-tailed intervals. This is due to

the fact that the bias is less important in these designs than in the first one relative to the variance.

Nevertheless, the equal-tailed intervals are much shorter than the symmetric ones.

Conclusion

In this paper, we theoretically justify two bootstrap methods for inference on the coeffi cients in factor-

augmented regressions with serial correlation. Serial correlation naturally arises in a multi-step fore-

casting context or in a forecasting model that is dynamically misspecified. Our proposed bootstrap

algorithm resamples the idiosyncratic errors with the wild bootstrap and the regression errors with

either the block wild bootstrap or dependent wild bootstrap. Both methods are proved to provide

valid inference under strong mixing dependence despite factor estimation error.

The results in this paper can be used to construct valid prediction intervals for the conditional

mean or the realization of the variable of interest h periods into the future. This extension of the

current results is explored in a recent paper by Gonçalves, Perron, and Djogbenou (2013).
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A Appendix 1: Proofs of results in Sections 2 and 3

We first state an auxiliary result which strengthens the results in Lemma A.1 in Bai (2003, p. 159)

and Theorem 1 in Bai and Ng (2002, p. 198), followed by its proof. We then prove the results in the

main text.

Lemma A.1 Under Assumptions 1, 2, 3 and 4.a) strengthened by Assumption 3’.d), if N−1T 1/2 →

c <∞, then
T∑
t=1

∥∥∥F̃t −HFt∥∥∥4
= OP (1) .

Proof of Lemma A.1. We have the following identity

F̃t −HFt = Ṽ −1

T−1
T∑
s=1

F̃sγst︸ ︷︷ ︸
at

+ T−1
T∑
s=1

F̃sζst︸ ︷︷ ︸
bt

+ T−1
T∑
s=1

F̃sηst︸ ︷︷ ︸
ct

+ T−1
T∑
s=1

F̃sξst︸ ︷︷ ︸
dt

 ,

where γst = E

(
N−1

N∑
i=1

eiseit

)
, ζst = N−1

N∑
i=1

(
eiseit − E

(
N−1

N∑
i=1

eiseit

))
, ηst = N−1

N∑
i=1

λ′iFseit,

and ξst = N−1
N∑
i=1

λ′iFteis. By the c-r inequality, it follows that

T∑
t=1

∥∥∥F̃t −HFt∥∥∥4
≤ 43

∥∥∥Ṽ −1
∥∥∥4
(

T∑
t=1

‖at‖4 +
T∑
t=1

‖bt‖4 +
T∑
t=1

‖ct‖4 +
T∑
t=1

‖dt‖4
)
.

Note that T−1
T∑
t=1

‖at‖4 ≤ T

(
T−1

T∑
t=1

‖at‖2
)2

and T−1
T∑
t=1

‖at‖2 = OP
(
T−1

)
(Bai and Ng (2002,

p. 213)), implying that
T∑
t=1

‖at‖4 = OP (1) . Similarly, by repeated application of Cauchy-Schwarz

inequality,

T∑
t=1

‖bt‖4 ≤

T−2
T∑
s=1

T∑
u=1

∣∣∣F̃ ′sF̃u∣∣∣
(

T∑
t=1

ζ2
stζ

2
ut

)1/2
2

≤
(
T−1

T∑
s=1

∥∥∥F̃s∥∥∥2
)2

T−2
T∑
s=1

T∑
u=1

(
T∑
t=1

ζ2
stζ

2
ut

)
,

where we can show that T−1
T∑
s=1

∥∥∥F̃s∥∥∥2
= OP (1) and T−2

T∑
s=1

T∑
u=1

E

(
T∑
t=1

ζ2
stζ

2
ut

)
= O

(
N−2T

)
. In

particular,

T−2
T∑
s=1

T∑
u=1

E

(
T∑
t=1

ζ2
stζ

2
ut

)
≤ T−2

T∑
s=1

T∑
u=1

T∑
t=1

[
max
s,t

E
(
ζ4
st

)]1/2 [
max
u,t

E
(
ζ4
ut

)]1/2

≤ T
[
max
s,t

E
(
ζ4
st

)]
= O

(
N−2T

)
,
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since max
s,t

E
(
ζ4
st

)
= O

(
N−2

)
by Assumption 2.c). Thus,

T∑
t=1

‖bt‖4 = OP
(
N−2T

)
. Thirdly,

T∑
t=1

‖ct‖4 =
T∑
t=1

∥∥∥∥∥(NT )−1
T∑
s=1

F̃sF
′
sΛet

∥∥∥∥∥
4

≤
T∑
t=1

∥∥N−1Λet
∥∥4

∥∥∥∥∥T−1
T∑
s=1

F̃sF
′
s

∥∥∥∥∥
4

,

implying that

T∑
t=1

‖ct‖4 ≤
T

N2

1

T

T∑
t=1

∥∥∥∥∥N−1/2
N∑
i=1

λiet

∥∥∥∥∥
4(

T−1
T∑
s=1

∥∥∥F̃s∥∥∥2
)2(

T−1
T∑
s=1

‖Fs‖2
)2

= OP
(
N−2T

)
,

given in particular Assumption 3’.d). The proof that
T∑
t=1

‖dt‖4 = OP
(
N−2T

)
is similar and therefore

omitted. Thus,
T∑
t=1

∥∥∥F̃t −HFt∥∥∥4
= OP (1) +OP

(
N−2T

)
= OP (1) as N−1T 1/2 → c <∞.

Proof of Theorem 2.1. We apply Theorem 2.1 of GP (2014) by verifying their high level

assumptions. Our Assumptions 1-4 coincide with their Assumptions 1-4, whereas by Theorem 5.3

of Gallant and White (1988, p. 76), we have that Ω−1/2T−1/2z′ε →d N (0, I), which verifies their

Assumption 5.b). Finally, our moment conditions on zt and εt+h imply those of GP (2014).

Proof of Lemma 2.1. We can write Ω̂ = A1T +A2T +A3T +A′2T +A4T +A5T +A′3T +A′5T +A6T ,

with

A1T = T−1
T−h∑
s=1

T−h∑
t=1

ẑtεt+hẑ
′
sεs+hk

(
s− t
MT

)
, A2T = T−1

T−h∑
s=1

T−h∑
t=1

ẑtεt+h

(
δ − δ̂

)′
ẑsẑ
′
sk

(
s− t
MT

)
,

A3T = T−1
T−h∑
s=1

T−h∑
t=1

ẑtεt+hα
′H−1

(
HFs − F̃s

)
ẑ′sk

(
s− t
MT

)
,

A4T = T−1
T−h∑
s=1

T−h∑
t=1

ẑtẑ
′
t

(
δ − δ̂

)(
δ − δ̂

)′
ẑsẑ
′
sk

(
s− t
MT

)
,

A4T = T−1
T−h∑
s=1

T−h∑
t=1

ẑtẑ
′
t

(
δ − δ̂

)(
δ − δ̂

)′
ẑsẑ
′
sk

(
s− t
MT

)
,

A5T = T−1
T−h∑
s=1

T−h∑
t=1

ẑtẑ
′
t

(
δ − δ̂

)
α′H−1

(
HFs − F̃s

)
ẑ′sk

(
s− t
MT

)
, and

A6T = T−1
T−h∑
s=1

T−h∑
t=1

ẑt

(
HFt − F̃t

)′ (
H−1

)′
αα′H−1

(
HFs − F̃s

)
ẑ′sk

(
s− t
MT

)
.

Next we show A1T →P Φ0ΩΦ′0 and AiT = oP (1) , for i = 2, . . . , 6. Starting with A2T , note that

A2T = T−1
T−h∑
t=1

ẑtεt+h

(
δ − δ̂

)′
ẑtẑ
′
t + T−1

T−h−1∑
τ=1

T−h−τ∑
t=1

ẑtεt+h

(
δ − δ̂

)′
ẑt+τ ẑ

′
t+τk

(
τ

MT

)

+T−1
T−h−1∑
τ=1

T−h−τ∑
t=1

ẑt+τεt+h+τ

(
δ − δ̂

)′
ẑtẑ
′
tk

(
τ

MT

)
≡ A2T,1 +A2T,2 +A2T,3.
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By repeated application of Cauchy-Schwarz inequality,

‖A2T,1‖ ≤
∥∥∥δ − δ̂∥∥∥(T−1

T−h∑
t=1

‖ẑt‖4
)3/4(

T−1
T−h∑
t=1

‖εt+h‖4
)1/4

.

Similarly, we can show that

‖A2T,2‖ ≤
∥∥∥δ − δ̂∥∥∥ T−h∑

τ=1

∣∣∣∣k( τ

MT

)∣∣∣∣
(
T−1

T−h∑
t=1

‖ẑt‖4
)3/4(

T−1
T−h∑
t=1

‖εt+h‖4
)1/4

,

where the same bound holds for ‖A2T,3‖ . It follows that

‖A2T ‖ ≤ 2
∥∥∥δ − δ̂∥∥∥ T−h∑

τ=0

∣∣∣∣k( τ

MT

)∣∣∣∣
(
T−1

T−h∑
t=1

‖ẑt‖4
)3/4(

T−1
T−h∑
t=1

‖εt+h‖4
)1/4

.

By Theorem 2.1,
∥∥∥δ − δ̂∥∥∥ = OP

(
T−1/2

)
. Since M−1

T

T−h∑
τ=0

∣∣∣∣k( τ

MT

)∣∣∣∣→ ∫ +∞

0
|k (x)| dx <∞, we have

that
T−h∑
τ=0

∣∣∣∣k( τ

MT

)∣∣∣∣ = O (MT ) . We can also show that the two last factors are OP (1) (in partic-

ular, by Lemma A.1 and the decomposition ẑt = Φzt + (ẑt − Φzt) , we have that T−1
T−h∑
t=1

‖ẑt‖4 ≤

8Φ4T−1
T−h∑
t=1

‖zt‖4 + 8T−1
T−h∑
t=1

‖ẑt − Φzt‖4 = OP (1) given Markov’s inequality and the moment condi-

tions on zt). Thus, A2T = OP

(
T−1/2MT

)
= oP (1) since T−1/2MT → 0. Turning now to A3T , and

given that ẑt = Φzt + (ẑt − Φzt), we can write A3T = A3T,1 +A3T,2, where

A3T,1 = T−1
T−h∑
s=1

T−h∑
t=1

(ẑt − Φzt) εt+hα
′H−1

(
HFs − F̃s

)
ẑ′sk

(
s− t
MT

)
and

A3T,2 = T−1Φ
T−h∑
s=1

T−h∑
t=1

ztεt+hα
′H−1

(
HFs − F̃s

)
ẑ′sk

(
s− t
MT

)
.

Using the same arguments as for A2T , we can show that ‖A3T,1‖ = OP

(
T−1/2MT

)
. Similarly,

‖A3T,2‖ ≤ ‖Φ‖
∥∥α′H−1

∥∥(T−1
T−h∑
s=1

∥∥∥HFs − F̃s∥∥∥4
)1/4(

T−1
T−h∑
s=1

‖ẑs‖4
)1/4

T−1
T−h∑
s=1

∥∥∥∥∥
T−h∑
t=1

ztεt+hk

(
s− t
MT

)∥∥∥∥∥
2
1/2

,

which is OP

((
T−1/2MT

)1/2
)
. In particular, the last factor is OP (MT ) . To see this, note that

E

T−1
T−h∑
s=1

∥∥∥∥∥
T−h∑
t=1

ztεt+hk

(
s− t
MT

)∥∥∥∥∥
2
 = T−1

T−h∑
s=1

T−h∑
t1=1

T−h∑
t2=1

E
(
z′t1εt1+hzt2εt2+h

)
k

(
s− t1
MT

)
k

(
s− t2
MT

)

≤ T−1
T−h∑
t1=1

T−h∑
t2=1

∣∣E (z′t1εt1+hzt2εt2+h

)∣∣ +∞∑
τ=−∞

∣∣∣∣k( τ

MT

)∣∣∣∣2 = OP (MT ) ,
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given that the first factor is OP (1) (by a mixingale inequality, cf. Corollary 14.3 of Davidson (1994,

p. 212) with p = r > 2 and r >
p

p− 1
and the fact that E ‖ztεt+h‖r ≤ C < ∞) and that the

second factor is O (MT ) since M−1
T

+∞∑
τ=−∞

∣∣∣∣k( τ

MT

)∣∣∣∣2 → ∫ +∞

−∞
k (x)2 dx ≤

∫ +∞

−∞
|k (x)| dx <∞. Thus,

A3T = OP

(
T−1/2MT

)
= oP (1) . Similar arguments show that ‖A4T ‖ ≤ OP

(
T−1MT

)
= oP (1),

A5T = OP

(
T−3/4MT

)
= oP (1) and A6T = OP

(
T−1/2MT

)
= oP (1). Finally, we show that A1T →P

Φ0ΩΦ′0. By replacing ẑt with Φzt + (ẑt − Φzt), we can write A1T = A1T,1 + A1T,2 + A1T,3 + A′1T,3,

where

A1T,1 = ΦT−1
T−h∑
s=1

T−h∑
t=1

ztεt+hz
′
sεs+hk

(
s− t
MT

)
Φ′,

A1T,2 = T−1
T−h∑
s=1

T−h∑
t=1

(ẑt − Φzt) εt+h (ẑs − Φzs)
′ εs+hk

(
s− t
MT

)
,

A1T,3 = ΦT−1
T−h∑
s=1

T−h∑
t=1

ztεt+h (ẑs − Φzs)
′ εs+hk

(
s− t
MT

)
.

By arguments similar to those already used, we can show that the last two terms are OP
(
T−1/2MT

)
=

op (1) . To show that A1T,1 →P Φ0ΩΦ′0, note that under our assumptions, E ‖ztεt+h‖
2r < C and

{ztεt+h} is a strong mixing sequence of size −
3r

r − 2
. The result then follows by Proposition 1 of

Andrews (1991, p. 825) and the fact that Φ = Φ0 + oP (1) . Since T−1ẑ′ẑ = Φ0ΣzzΦ
′
0 + oP (1) with

Σzz > 0, we conclude that Σ̂δ →P Σδ =
(
Φ′0
)−1

Σ−1
zz ΩΣ−1

zz Φ−1
0 .

Proof of Theorem 3.1. We verify Conditions A*-F* of GP (2014). Because our bootstrap

scheme relies on the wild bootstrap to generate e∗it, as in GP (2014), conditions that only involve

this random variable were already verified by them. In particular, Conditions A*, B* and F* are

satisfied under our assumptions (see proof of Theorem 4.1 of GP (2014)). Hence, we only need to

verify Conditions C*, D* and E*. Starting with Condition C*(a), by the independence between e∗it
and ε∗s+h, and the fact that e

∗
it is independent across (i, t), it follows that

T−1
T∑
t=1

E∗

∣∣∣∣∣(TN)−1/2
T−h∑
s=1

N∑
i=1

ε∗s+h (e∗ite
∗
is − E (e∗ite

∗
is))

∣∣∣∣∣
2

= T−2
T∑
t=1

T−h∑
s=1

T−h∑
l=1

E∗
(
ε∗s+hε

∗
l+h

)
N−1

N∑
i=1

N∑
j=1

Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
jl

)
= T−2

T∑
t=1

T−h∑
s=1

ε̂2
s+hN

−1
N∑
i=1

ẽ2
itẽ

2
isV ar

∗ (ηitηis)

≤ CN−1
N∑
i=1

(
T−1

T∑
t=1

ẽ2
it

)(
T−1

T−h∑
s=1

ε̂2
s+hẽ

2
is

)
,
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where the second equality uses the fact that Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
jl

)
= 0 for i 6= j or s 6= l, and E∗

(
ε∗2s+h

)
=

ε̂2
s+h, given that E

∗ (η2
j

)
= 1. The inequality relies on a bound for V ar∗ (ηitηis) under our assumptions.

The result follows by an application of Cauchy-Schwarz inequality given in particular the fact that

(NT )−1
N∑
i=1

T∑
t=1

ẽ4
it = OP (1) and T−1

T−h∑
s=1

ε̂4
s+h = OP (1) under our assumptions. For Condition C*(b),

we can show that

E∗

∥∥∥∥∥(NT )−1/2
T−h∑
t=1

N∑
i=1

λ̃ie
∗
itε
∗
t+h

∥∥∥∥∥
2

= (NT )−1
T−h∑
t=1

ε̂2
t+h

(
N∑
i=1

∥∥∥λ̃i∥∥∥2
ẽ2
it

)
,

using the facts that E∗
(
e∗ite
∗
js

)
= 0 whenever i 6= j or t 6= s and E∗

(
ε∗2t+h

)
= ε̂2

t+h. The rest of the proof

follows exactly the proof of GP (2014) (cf. Proof of their Theorem 4.1). The proof of Condition C*(c)

follows the proof in GP (2014) closely with the only difference that we show that T−1
T−h∑
t=1

ε∗4t+h = Op∗(1)

in probability. Indeed,

E∗

(
T−1

T−h∑
t=1

ε∗4t+h

)
= T−1

kT∑
j=1

bT∑
l=1

ε̂4
(j−1)bT+l+hE

∗ (ν4
j

)
≤ CT−1

kT∑
j=1

bT∑
l=1

ε̂4
(j−1)bT+l+h = CT−1

T−h∑
t=1

ε̂4
t+h,

since E∗
(
ν4
j

)
≤ C <∞. Because T−1

T−h∑
t=1

ε̂4
t+h = OP (1) under our assumptions, this proves the desired

result. For Condition D*(a), we have that for any i = 1, . . . , bT and j = 1, . . . , kT , E
∗
(
ε∗i+(j−1)bT+h

)
=

ε̂(j−1)bT+i+hE
∗ (νj) = 0 and T−1

T−h∑
t=1

E∗
∣∣ε∗t+h∣∣2 = T−1

T−h∑
t=1

ε̂2
t+h = Op (1) . For Condition D*(b), let

ξ∗j ≡ Ω∗−1/2b
−1/2
T

bT∑
l=1

ẑ(j−1)bT+lε
∗
(j−1)bT+l+h = Ω∗−1/2b

−1/2
T

bT∑
l=1

ẑ(j−1)b+lε̂(j−1)bT+l+hνj ,

where νj are i.i.d. (0, 1) across j. We can write Ω∗−1/2T−1/2
T−h∑
t=1

ẑtε
∗
t+h = k

−1/2
T

kT∑
j=1

ξ∗j , where ξ
∗
j are

conditionally independent for j = 1, . . . , kT , with E∗
(
ξ∗j
)

= 0 and V ar∗

k−1/2
T

kT∑
j=1

ξ∗j

 = I. It suffi ces

to show that for some d > 1, ZT ≡ k−dT
kT∑
j=1

E∗
∥∥ξ∗j∥∥2d

= oP (1). Replacing ξ∗j by its definition and using

the fact that kT = b−1
T (T − h), we have that

ZT ≤ C
∥∥∥Ω∗−1/2

∥∥∥2d 1

T d

kT∑
j=1

E∗

(∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lε
∗
(j−1)b+l+h

∥∥∥∥∥
)2d

.
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Since Ω∗ →P Φ0ΩΦ′0 (see Condition E* below) and Φ0ΩΦ′0 > 0,
∥∥∥Ω∗−

1
2

∥∥∥2d
= OP (1). We show that

the second factor is oP (1) . Noting that

ε∗(j−1)bT+l+h = ε(j−1)bT+l+h ·νj−ẑ′(j−1)bT+l

(
δ̂ − δ

)
·νj+

(
HF(j−1)bT+l − F̃(j−1)bT+l

)′ (
H−1

)′
α·νj , (3)

we have that

1

T d

kT∑
j=1

E∗

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lε
∗
(j−1)bT+l+h

∥∥∥∥∥
2d

≤ 32d−1 1

T d

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

∥∥∥∥∥
2d

E∗ |νj |2d

+32d−1 1

T d

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lẑ
′
(j−1)bT+l

(
δ̂ − δ

)∥∥∥∥∥
2d

E∗ |νj |2d

+32d−1 1

T d

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+l

(
HF(j−1)bT+l − F̃(j−1)bT+l

)′ (
H−1

)′
α

∥∥∥∥∥
2d

E∗ |νj |2d ≡ Z1T + Z2T + Z3T .

Starting with Z1T , by letting ẑ(j−1)b+l = Φz(j−1)bT+l +
(
ẑ(j−1)bT+l − Φz(j−1)bT+l

)
and using the c-r

inequality,

Z1T ≤ C
1

T d

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

∥∥∥∥∥
2d

≤ C ‖Φ‖2d 22d−1

T d

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

z(j−1)bT+lε(j−1)bT+l+h

∥∥∥∥∥
2d

+C
22d−1

T d

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

(
ẑ(j−1)bT+l − Φz(j−1)bT+l

)
ε(j−1)bT+l+h

∥∥∥∥∥
2d

.

Noting that for any d > 1,

kT∑
j=1

|aj |2d ≤

 kT∑
j=1

|aj |2
d

for any aj , we can bound the second term of Z1T

by

C
1

T d

 kT∑
j=1

∥∥∥∥∥
bT∑
l=1

(
ẑ(j−1)b+l − Φz(j−1)bT+l

)
ε(j−1)bT+l+h

∥∥∥∥∥
2
d

= OP

((
T−1/2bT

)d)
= oP (1) ,

given an application of the c-r inequality and the fact that
T−h∑
t=1

‖ẑt − Φzt‖4 = OP (1) and
T−h∑
t=1

ε4
t =

OP (T ) . Similarly, we can show that the first term of Z1t is oP (1). This follows by showing that its

expectation is of order O
((
T−1bT

))d−1
= o (1) for some 1 < d < 2, given standard inequalities (in

particular, we rely on Corollary 14.3 of Davidson (1994)). For Z2T , by repeated application of the

Cauchy-Schwarz and the c-r inequalities, we have that it is bounded by

1

T d

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lẑ
′
(j−1)bT+l

(
δ̂ − δ

)∥∥∥∥∥
2d

≤ bdT
T d

∥∥∥δ̂ − δ∥∥∥2d
kT∑
j=1

(
bT∑
l=1

∥∥ẑ(j−1)bT+l

∥∥4

)d
= O

(
bdT /T

d
)
·OP

(
1/T d

)
·OP

(
kT · bdT

)
= OP

(
b2d−1
T /T 2d−1

)
= oP (1) .
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That Z3T = OP

((
T−1/2bT

)d)
follows by similar arguments and we omit the details. For Condition

E*, since νj is independent over j = 1, . . . , kT , with V ar∗ (νj) = 1, we have that

Ω∗ = T−1V ar∗

 kT∑
j=1

bT∑
l=1

ẑ(j−1)bT+lε̂(j−1)bT+l+h · νj


= T−1

kT∑
j=1

(
bT∑
l=1

ẑ(j−1)bT+lε̂(j−1)bT+l+h

)(
bT∑
l=1

ẑ(j−1)bT+lε̂(j−1)bT+l+h

)′
≡ Ω∗1T + Ω∗2T + Ω∗′2T + Ω∗3T ,

where

Ω∗1T = T−1
kT∑
j=1

(
bT∑
l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

)(
bT∑
l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

)′

Ω∗2T = T−1
kT∑
j=1

(
bT∑
l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

)

×
(

bT∑
l=1

ẑ(j−1)bT+l

[
−ẑ′(j−1)bT+l

(
δ̂ − δ

)
+ α′H−1

(
HF(j−1)bT+l − F̃(j−1)bT+l

)])′

Ω∗3T =
1

T

kT∑
j=1

(
bT∑
l=1

ẑ(j−1)bT+l

[
−ẑ′(j−1)bT+l

(
δ̂ − δ

)
+ α′H−1

(
HF(j−1)bT+l − F̃(j−1)bT+l

)])

×
(

bT∑
l=1

ẑ(j−1)bT+l

[
−ẑ′(j−1)bT+l

(
δ̂ − δ

)
+ α′H−1

(
HF(j−1)bT+l − F̃(j−1)bT+l

)])′
.

Starting with Ω∗1T , and using the fact that ẑ(j−1)bT+l = Φz(j−1)bT+l +
(
ẑ(j−1)bT+l − Φz(j−1)bT+l

)
, we

can write Ω∗1T = Ω∗1.1T + Ω∗1.2T + Ω∗′1.2T + Ω∗1.3T , where

Ω∗1.1T = T−1Φ

kT∑
j=1

(
bT∑
l=1

z(j−1)bT+lε(j−1)bT+l+h

)(
bT∑
l=1

z(j−1)bT+lε(j−1)bT+l+h

)′
Φ′,

Ω∗1.2T = T−1Φ

kT∑
j=1

(
bT∑
l=1

z(j−1)bT+lε(j−1)bT+l+h

)(
bT∑
l=1

(
ẑ(j−1)bT+l − Φz(j−1)bT+l

)
ε(j−1)bT+l+h

)′
and

Ω∗1.3T = T−1
kT∑
j=1

(
bT∑
l=1

(
ẑ(j−1)bT+l − Φz(j−1)bT+l

)
ε(j−1)bT+l+h

)(
bT∑
l=1

(
ẑ(j−1)bT+l − Φz(j−1)bT+l

)
ε(j−1)bT+l+h

)′
.

We can show that Ω∗1.1T →P Φ0ΩΦ′0 by an application of Theorem 3.1 of Lahiri (2003, p. 49) and the

fact that Φ = Φ0 + oP (1). For Ω∗1.2T , by Cauchy-Schwarz inequality, we have that

Ω∗1.2T ≤ ‖Φ‖

T−1
kT∑
j=1

∥∥∥∥∥
bT∑
l=1

z(j−1)bT+lε(j−1)bT+l+h

∥∥∥∥∥
2


1
2
T−1

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

(
ẑ(j−1)bT+l − Φz(j−1)bT+l

)
ε(j−1)bT+l+h

∥∥∥∥∥
2


1
2

= OP
(
b2T /T

) 1
4 = oP (1) ,
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where the first factor is OP (1) by a mixingale inequality. The second factor is bounded by

T−1bT

kT∑
j=1

bT∑
l=1

∥∥(ẑ(j−1)bT+l − Φz(j−1)bT+l

)
ε(j−1)bT+l+h

∥∥2 ≤ T−1bT

T−h∑
t=1

‖(ẑt − Φzt) εt+h‖2

≤ bT

(
T−1

T−h∑
t=1

‖ẑt − Φzt‖4
) 1

2
(
T−1

T−h∑
t=1

ε4
t+h

) 1
2

= OP

(
T−1/2bT

)
,

since
T−h∑
t=1

‖ẑt − Φzt‖4 = OP (1) . The same argument can be used to show that ‖Ω∗1.3T ‖ = OP

(
T−1/2bT

)
=

oP (1) , implying that Ω∗1T = oP (1). Next, we show that Ω∗2T = oP (1) . Letting X̂j ≡
bT∑
l=1

ẑ(j−1)bT+lε(j−1)bT+l+h,

by Cauchy-Schwarz inequality, we can bound ‖Ω∗2T ‖ byT−1
kT∑
j=1

∥∥∥X̂j

∥∥∥2

 1
2
T−1

kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+l

(
−ẑ′(j−1)bT+l

(
δ̂ − δ

)
+ α′H−1

(
HF(j−1)bT+l − F̃(j−1)bT+l

))∥∥∥∥∥
2


1
2

,

where the first factor is equal (trace (Ω∗1T ))1/2 = oP (1), as we showed before. For the second factor,

and ignoring the square root, applying twice the c-r inequality yields the bound

2T−1
kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lẑ
′
(j−1)bT+l

(
δ̂ − δ

)∥∥∥∥∥
2

+ 2T−1
kT∑
j=1

∥∥∥∥∥
bT∑
l=1

ẑ(j−1)bT+lα
′H−1

(
HF(j−1)bT+l − F̃(j−1)bT+l

)∥∥∥∥∥
2

≤ Ω∗2.1T + Ω∗2.2T ,

where

Ω∗2.1T = 2T−1bT

kT∑
j=1

bT∑
l=1

∥∥∥ẑ(j−1)bT+lẑ
′
(j−1)bT+l

(
δ̂ − δ

)∥∥∥2
≤ 2T−1bT

∥∥∥δ̂ − δ∥∥∥2
T−h∑
t=1

‖ẑt‖4 = OP
(
T−1bT

)
,

and

Ω∗2.2T = 2T−1bT

kT∑
j=1

bT∑
l=1

∥∥∥ẑ(j−1)bT+lα
′H−1

(
HF(j−1)bT+l − F̃(j−1)bT+l

)∥∥∥2
= 2T−1bT

T−h∑
t=1

∥∥∥ẑtα′H−1
(
HFt − F̃t

)∥∥∥2

≤ 2T−1bT
∥∥α′H−1

∥∥2

(
T−h∑
t=1

‖ẑt‖4
) 1

2
(
T−h∑
t=1

∥∥∥HFt − F̃t∥∥∥4
) 1

2

= OP

(
T−1/2bT

)
,

since in particular
T−h∑
t=1

∥∥∥HFt − F̃t∥∥∥4
= OP (1) . Hence, Ω∗2T = oP (1) . Finally, note that ‖Ω∗3T ‖ ≤

Ω∗2.1T + Ω∗2.2T = oP (1), which completes the proof.

Proof of Theorem 3.2. The proof follows closely that of Theorem 3.1, so we only highlight the

main differences. As in that proof, only Conditions C*, D* and E* of GP (2014) need to be verified,

now with ε∗s+h = ε̂s+h · w∗s+h, where w∗ is lT -dependent with mean zero and covariance matrix K, a

(T − h)× (T − h) matrix with typical element given by Kij = kdwb

(
j − i
lT

)
, where kdwb (·) is a kernel
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function and lT is a bandwidth parameter. Conditions C*(a) and (b) follow immediately by noting that

E∗
(
ε∗2s+h

)
= ε̂2

s+h since V ar
∗ (w∗) = K with diagonal elements equal to one. Condition C*(c) follows

by noting that E∗
(
ε∗4t+h

)
= ε̂4

t+hE
∗ (w∗4t+h) , where E∗ (w∗4t+h) ≤ C < ∞ and T−1

T−h∑
t=1

ε̂4
t+h = OP (1) .

Condition D*(a) follows exactly as in the proof of Theorem 3.1, with w∗t replacing vj . To prove

D*(b), by a decomposition of ε∗t+h similar to that in (3) with vj replaced with w
∗
t+h and the fact that

ẑt = Φzt + (ẑt − Φzt) , Ω∗−1/2T−1/2
T−h∑
t=1

ẑtε
∗
t+h = J1T + J2T + J3T + J4T , where

J1T = Ω∗−1/2T−1/2Φ

T−h∑
t=1

ztεt+hw
∗
t+h, J2T = Ω∗−1/2T−1/2

T−h∑
t=1

(ẑt − Φzt) εt+hw
∗
t+h,

J3T = −Ω∗−1/2T−1/2
T−h∑
t=1

ẑtẑ
′
t

(
δ̂ − δ

)
w∗t+h, and J4T = Ω∗−1/2T−1/2

T−h∑
t=1

ẑt

(
HFt − F̃t

)′ (
H−1

)′
αw∗t+h.

We first show that JiT = oP ∗ (1) for i = 2, 3 and 4. Starting with J2T , we have that

‖J2T ‖ ≤
∥∥∥Ω∗−

1
2

∥∥∥T−1/2

∥∥∥∥∥
T−h∑
t=1

(ẑt − Φzt) εt+hw
∗
t+h

∥∥∥∥∥ = OP ∗

(
T−1/2

(
T 1/2lT

)1/2
)

= OP ∗
(
T−1/4l

1/2
T

)
= oP ∗ (1) ,

since T−1l2T → 0 and J2.1,T ≡ E∗

∥∥∥∥∥
T−h∑
t=1

(ẑt − Φzt) εt+hw
∗
t+h

∥∥∥∥∥
2

= OP

(
T 1/2lT

)
. Indeed, noting that

E∗
(
w∗t+hw

∗
s+h

)
= kdwb

(
t− s
lT

)
,

J2.1,T =
T−h∑
t=1

T−h∑
s=1

(ẑt − Φzt)
′ (ẑs − Φzs) εt+hεs+hE

∗ (w∗t+hw∗s+h)
≤ 2T 1/2lT

(
T−h∑
t=1

‖ẑt − Φzt‖4
)1/2(

T−1
T−h∑
t=1

ε4
t+h

)1/2

l−1
T

T−h∑
τ=0

∣∣∣∣kdwb( τ

lT

)∣∣∣∣ = OP

(
T 1/2lT

)
.

For J3T , we have that

‖J3T ‖ ≤
∥∥∥Ω∗−1/2

∥∥∥T−1/2

∥∥∥∥∥
T−h∑
t=1

ẑtẑ
′
t

(
δ̂ − δ

)
w∗t+h

∥∥∥∥∥ = OP ∗
(
T−1/2l

1/2
T

)
= oP ∗ (1) ,

where J3.1,T ≡ E∗
∥∥∥∥∥
T−h∑
t=1

ẑtẑ
′
t

(
δ̂ − δ

)
w∗t+h

∥∥∥∥∥
2

= OP (lT ). Indeed,

J3.1,T =
(
δ − δ̂

)′(T−h∑
s=1

T−h∑
t=1

ẑtẑ
′
tẑsẑ

′
sE
∗ (w∗t+hw∗s+h)

)(
δ − δ̂

)
≤ 2T

∥∥∥δ − δ̂∥∥∥2
T−h∑
τ=0

∣∣∣∣kdwb( τ

lT

)∣∣∣∣T−1
T−h∑
t=1

‖zt‖4 ,

which is OP (lT ) . Similarly, we can show that J4,T = OP ∗
(
T−1/4l

1/2
T

)
= oP ∗ (1) . It remains to

show that J1,T →d∗ N (0, I) in probability. For this purpose, we use Theorem 3.1 of Shao (2010) by

verifying his assumptions. In particular, as {ztεt+h} are strong mixing of size −
3r

r − 2
for some r > 2
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with E ‖ztεt+h‖2r < C < ∞, we have that
∞∑
j=1

α (j)
r
r+2 < ∞ verifying his Assumption 3.1. We also

have that
∞∑
j=1

j2α (j)
r−2
r < ∞ and E ‖ztεt+h‖2r < C < ∞, thus verifying Shao’s Assumption 3.2 (by

Lemma 1 of Andrews (1991)). Finally, we verify Condition E* of GP (2014). Following Lemma 2.1,

we can write Ω∗ = B1T +B2T +B3T +B′2T +B4T +B5T +B′3T +B′5T +B6T , with

B1T = T−1E∗

(
T−h∑
t=1

ẑtεt+hw
∗
t+h

)(
T−h∑
s=1

ẑsεs+hw
∗
s+h

)′
,

B2T = T−1E∗

(
T−h∑
t=1

ẑtεt+hw
∗
t+h

)(
T−h∑
s=1

ẑsẑ
′
s

(
δ − δ̂

)
w∗s+h

)′

B3T = T−1E∗

(T−h∑
t=1

ẑtεt+hw
∗
t+h

)(
T−h∑
s=1

ẑs

(
HFs − F̃s

)′ (
H−1

)′
αw∗s+h

)′ ,
B4T = T−1E∗

(T−h∑
t=1

ẑtẑ
′
t

(
δ − δ̂

)
w∗t+h

)(
T−h∑
s=1

ẑsẑ
′
s

(
δ − δ̂

)
w∗s+h

)′ ,
B5T = T−1E∗

(T−h∑
t=1

ẑtẑ
′
t

(
δ − δ̂

)
w∗t+h

)(
T−h∑
s=1

ẑs

(
HFs − F̃s

)′ (
H−1

)′
αw∗s+h

)′
and

B6T = T−1E∗

(T−h∑
t=1

ẑt

(
HFt − F̃t

)′ (
H−1

)′
αw∗t+h

)(
T−h∑
s=1

ẑs

(
HFs − F̃s

)′ (
H−1

)′
αw∗s+h

)′ .
We show that each of BiT , i = 2, 3, ..., 6 are oP (1) and that B1T →P Φ0ΩΦ′0. Starting with B2T ,

‖B2T ‖ ≤ T−1

E∗ ∥∥∥∥∥
T−h∑
t=1

ẑtεt+hw
∗
t+h

∥∥∥∥∥
2
1/2(

E∗

∥∥∥∥∥
T−h∑
s=1

ẑsẑ
′
s

(
δ − δ̂

)
w∗s+h

∥∥∥∥∥
)1/2

≡ T−1 (B2.1,T )1/2 (J3.1,T )1/2 ,

where J3.1,T = OP (lT ), as shown above, and

B2.1,T = E∗

∥∥∥∥∥
T−h∑
t=1

Φztεt+hw
∗
t+h +

T−h∑
t=1

(ẑt − Φzt) εt+hw
∗
t+h

∥∥∥∥∥
2

≤ 2E∗

∥∥∥∥∥
T−h∑
t=1

Φztεt+hw
∗
t+h

∥∥∥∥∥
2

+ 2E∗

∥∥∥∥∥
T−h∑
t=1

(ẑt − Φzt) εt+hw
∗
t+h

∥∥∥∥∥
2

,

where we can show that the first term is OP (T ) and the second term is identical to J2.1,T =

OP

(
T 1/2lT

)
. Hence, B2.1,T = OP (T ) given that lT = o

(√
T
)
by assumption. This implies that

‖B2T ‖ = OP

(
T−1/2l

1/2
T

)
= oP (1). For B3T , by Cauchy-Schwarz inequality,

‖B3T ‖ ≤ T−1 (B2.1,T )1/2 (B3.1,T )1/2 = Op

((
l2T /T

)1/4)
,
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where B2.1,T = OP (T ) and B3.1,T ≡ E∗
∥∥∥∥∥
T−h∑
s=1

ẑs

(
HFs − F̃s

)′ (
H−1

)′
αw∗s+h

∥∥∥∥∥
2

= OP

(
T 1/2lT

)
, as can

be shown using similar arguments as above. For B4T , note that ‖B4T ‖ ≤ T−1J3.1,T = OP
(
T−1lT

)
=

op (1) . For B5T , by Cauchy-Schwarz inequality, we have that ‖B5T ‖ ≤ T−1 (J3.1,T )1/2 (B3.1,T )1/2 =

OP
(
T−1

)
OP

(
l
1/2
T

)
OP

(
T 1/4l

1/2
T

)
= OP

(
T−3/4lT

)
= oP (1) . ForB6T , note that ‖B6T ‖ ≤ T−1B3.1,T =

OP

(
T−1/2lT

)
= oP (1) . Finally, note that

B1T = T−1ΦE∗

(
T−h∑
t=1

ztεt+hw
∗
t+h

)(
T−h∑
s=1

ztεt+hw
∗
t+h

)′
Φ′ +B1.2,T ,

where ‖B1.2,T ‖ ≤ T−1J2.1,T = OP

(
T−1/2lT

)
= oP (1) . The first term converges in probability to

Φ0ΩΦ′0 given that Φ→P Φ0 and

T−1E∗

(
T−h∑
t=1

ztεt+hw
∗
t+h

)(
T−h∑
s=1

ztεt+hw
∗
t+h

)′
= T−1

T−h∑
t=1

T−h∑
s=1

ztz
′
sεt+hεs+hkdwb

(
s− t
lT

)
.

Proof of Lemma 3.1. The proof follows closely that of Lemma 2.1 and therefore we omit the

details.
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N = 

T = 50 100 50 100 50 100 50 100 50 100 50 100

OLS 56.9 54.3 75.8 77.8 68.7 71.2 75.3 81.0 61.5 68.5 72.1 79.5
True Ft 92.0 93.8 91.7 93.5 80.5 86.0 80.6 85.7 77.7 84.8 78.7 86.0

WB 87.0 89.3 91.1 92.5 82.9 88.8 84.7 90.1 84.3 90.3 86.3 91.0
Symmetric t BWB 86.9 89.4 90.9 92.4 84.3 88.9 86.0 90.5 85.1 90.0 87.3 91.2

DWB 86.9 89.5 90.8 92.7 84.5 89.2 86.3 90.5 85.1 89.8 87.3 91.5

WB 89.1 91.0 90.7 92.7 74.1 80.6 74.5 81.2 75.5 80.6 77.0 82.7
Equal-tailed t BWB 89.0 91.3 91.1 92.5 77.2 84.5 78.4 85.4 78.7 85.3 80.9 86.7

DWB 89.0 90.9 90.5 92.4 77.9 85.0 79.0 85.9 78.9 85.7 81.3 87.1

OLS 0.55 0.40 0.54 0.39 0.92 0.69 0.92 0.70 0.75 0.62 0.76 0.63
True Ft 0.57 0.40 0.57 0.40 0.98 0.72 0.97 0.73 0.81 0.66 0.81 0.66

WB 0.99 0.72 0.82 0.57 1.45 1.16 1.23 0.96 1.38 1.15 1.17 0.93
Symmetric t BWB 1.00 0.72 0.83 0.57 1.56 1.17 1.36 0.99 1.45 1.14 1.25 0.95

DWB 1.00 0.73 0.83 0.57 1.56 1.17 1.35 1.00 1.45 1.14 1.25 0.95

WB 0.70 0.48 0.65 0.44 1.05 0.78 0.98 0.75 0.96 0.75 0.90 0.71
Equal-tailed t BWB 0.71 0.48 0.65 0.44 1.20 0.87 1.15 0.85 1.09 0.84 1.04 0.80

DWB 0.70 0.48 0.65 0.44 1.20 0.88 1.15 0.85 1.09 0.84 1.04 0.80

OLS -0.21 -0.16 -0.14 -0.10 -0.20 -0.17 -0.13 -0.10 -0.21 -0.16 -0.14 -0.10
Bias True Ft 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WB -0.13 -0.12 -0.10 -0.08 -0.14 -0.12 -0.10 -0.08 -0.14 -0.12 -0.10 -0.08
BWB -0.13 -0.12 -0.10 -0.08 -0.14 -0.12 -0.10 -0.08 -0.14 -0.12 -0.10 -0.08
DWB -0.13 -0.12 -0.10 -0.08 -0.14 -0.12 -0.10 -0.08 -0.14 -0.12 -0.10 -0.08

OLS 1.59 1.64 1.59 1.64 4.09 5.70 4.51 6.23 4.56 6.01 4.95 6.46
WB 1.50 1.55 1.51 1.56 1.56 1.65 1.57 1.68 1.59 1.67 1.60 1.70

BWB 1.56 1.62 1.57 1.63 2.64 3.75 2.99 4.29 2.85 3.90 3.32 4.47
DWB 1.56 1.62 1.56 1.64 2.47 3.67 2.75 4.16 2.74 3.85 3.10 4.37

Bandwidth 

choices

Coverage 

rates for 

coefficient

Table 1. Simulation results

AR(1) errors

h = 1

50 100 50 100 50 100

Length of 

intervals

MA(h-1) errors

h = 1 h = 12



 




