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Résumé / Abstract 
 
Dans ce survol, nous passons en revue les modèles économétriques adaptés à l’inférence 
statistique sur données de prix d’options. Nous nous limitons aux options de type européen sur 
un indice de marché d’actions. Seules sont explicitées les techniques d’inférence statistique 
qui ont connu des développements spécifiques pour les données de prix d’options. L’accent 
est mis sur la modélisation. On commence par une synthèse des modèles en temps discret à 
partir du principe unificateur de facteur d’actualisation stochastique. Ceci nous permet de 
couvrir tant les modèles d’arbres multinomiaux que la valorisation risque neutre dans un 
contexte de log-normalité conditionnelle. L’extension aux mélanges de lois log-normales 
conduit aux modèles de volatilité stochastique, y compris les modèles avec effet de levier. 
Nos caractérisons les implications en termes de sourire de volatilité et montrons qu’elles sont 
pleinement similaires à celles d’un modèle de volatilité stochastique en temps continu. Nous 
passons ensuite aux modèles usuels en temps continu, notamment les modèles de diffusion 
avec sauts ou avec plusieurs facteurs non-linéaires, ainsi que les extensions avec processus de 
Lévy ou mémoire longue dans la volatilité. Nous abordons dans ce contexte les méthodes avec 
états implicites, à la fois paramétriques (maximum de vraisemblance) ou semiparamétriques 
(méthode des moments). Enfin, nous passons en revue les méthodes nonparamétriques qui 
permettent d’extraire directement les mesures de probabilité d’évaluation : canoniques, arbres 
binomiaux impliqués et approches semi-nonparamétriques (noyaux, réseaux de neurones et 
splines). Les implications en termes d’extraction des préférences sont aussi discutées. 
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In this survey, we review econometric models for conducting statistical inference on option 
price data. We limit our review to European options on a stock index as well as to statistical 
methods which have been specifically developped for options. Emphasis is put on the 
synthesis of the various models used in the literature. We start with discrete-time models 
based on the unifying principle of stochastic discount factor.  We cover multinomial trees as 
well as risk neutral valuation in a conditionally log-normal setting. Extensions to mixtures of 
log-normals lead to stochastic volatility models, including models with leverage effect. We 
characterize implications of such models for volatility smiles and show that they are fully 
similar to the ones derived from continuous-time stochastic volatility models. We then review 
usual continuous-time models, in particular affine jump-diffusion models or models with 
several nonlinear factors, as well as extensions with Levy processes or long memory in 
volatility. We analyze in this context implicit state methods, both parametric (maximum 
likelihood) and semiparametric (method of moments). We conclude with a review of 
nonparametric methods which are used to extract pricing probability measures: canonical, 
implied binomial trees, and seminonparametric approaches (kernels, neural networks and 
splines). Extraction of preferences based on these measures are also discussed.  

 
Keywords: Stock PriceDynamics, Multivariate Jump-DiffusionModels, 
Latent variables, Stochastic Volatility, Objective and Risk Neutral 
Distributions, Nonparametric Option Pricing, Discretetime Option Pricing 
Models, Risk Neutral Valuation, Preference-free Option Pricing. 
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1 Introduction and overview

The growth of the option pricing literature parallels the spectacular developments of deriva-
tive securities and the rapid expansion of markets for derivatives in the last three decades.
Writing a survey of option pricing models appears therefore like a formidable task. To
delimit our focus we will put emphasis on the more recent contributions since there are
already a number of surveys that cover the earlier literature. For example, Bates (1996b)
wrote an excellent review, discussing many issues involved in testing option pricing models.
Ghysels, Harvey and Renault (1996) and Shephard (1996) provide a detailed analysis of
stochastic volatility modelling, while Renault (1997) explores the econometric modelling
of option pricing errors. More recently, Sundaresan (2000) surveys the performance of
continuous-time methods for option valuation. The material we cover obviously has many
seminal contributions that pre-date the most recent work. Needless to say that due credit
will be given to the seminal contributions related to the general topic of estimating and
testing option pricing models. A last introductory word of caution: our survey deals almost
exclusively with studies that have considered modelling the return process of a stock index
and determining the price of European options written on this index.

One of the main advances that marked the econometrics of option pricing in the last
¯ve years has been the use of price data on both the underlying asset and options to jointly
estimate the parameters of the process for the underlying and the risk premia associated
with the various sources of risk. Even if important progress has been made regarding
econometric procedures, the lesson that can be drawn from the numerous investigations,
both parametric and nonparametric, in continuous time or in discrete time, is that the
empirical performance still leaves much room for improvement. The empirical option pric-
ing literature has revealed a considerable divergence between the risk-neutral distributions
estimated from option prices after the 1987 crash and conditional distributions estimated
from time series of returns on the underlying index. Three facts clearly stand out. First,
the implied volatility extracted from at-the-money options di®ers substantially from the
realized volatility over the lifetime of the option. Second, risk neutral distributions feature
substantial negative skewness which is revealed by the asymmetric implied volatility curves
when plotted against moneyness. Third, the shape of these volatility curves changes over
time and maturities, in other words the skewness and the convexity are time-varying and
maturity-dependent. Our survey will therefore explore possible explanations for the diver-
gence between the objective and the risk neutral distributions. Modelling of the dynamics
of the underlying asset price is an important part of the puzzle, while another essential
element is the existence of time-varying risk premia. The last issue stresses the potentially
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explicit role to be played by preferences in the pricing of options, a departure from the
central tenet of the preference-free paradigm.

The main approach to modelling stock returns at the time prior surveys were writ-
ten, was a continuous time stochastic volatility (henceforth SV) di®usion process possibly
augmented with an independent jump process in returns. Heston (1993) proposed a SV
di®usion model for which one could derive analytically an option pricing formula. Soon
thereafter, see e.g. Du±e and Kan (1996), it was realized that Heston's model belonged to
a rich class of a±ne jump di®usion processes for which one could obtain similar results.
Du±e, Pan and Singleton (2000) discuss equity and ¯xed income derivatives pricing for
the general class of a±ne jump di®usions. The evidence regarding the empirical ¯t of the
a±ne class of processes is mixed, see e.g. Dai and Singleton (2000), Chernov, Gallant,
Ghysels and Tauchen (2003), Ghysels and Ng (1998) for further discussion. There is a
consensus that single volatility factor models, a±ne (like Heston (1993)) or non-a±ne (like
Hull and White (1987) or Wiggins (1987)), do not ¯t the data (see Andersen, Benzoni and
Lund (2002), Benzoni (1998), Chernov, Gallant, Ghysels and Tauchen (2003), Pan (2002),
among others). How to expand single volatility factor di®usions to mimic the data generat-
ing process remains unsettled. Several authors augmented a±ne SV di®usions with jumps,
see Andersen, Benzoni and Lund (2001), Bates (1996a), Chernov, Gallant, Ghysels and
Tauchen (2003), Eraker, Johannes and Polson (2001), Pan (2002), among others. Bakshi,
Cao and Chen (1997), Bates (2000) Chernov, Gallant, Ghysels and Tauchen (2003) and
Pan (2002) show, however, that SV models with jumps in returns are not able to capture all
the empirical features of observed option prices and returns. Bates (2000) and Pan (2002)
argue that the speci¯cation of the volatility process should include jumps, possibly corre-
lated with the jumps in returns. Chernov, Gallant, Ghysels and Tauchen (2003) maintain
that a two-factor non-a±ne logarithmic SV di®usion model without jumps yields a supe-
rior empirical ¯t compared to a±ne one-factor or two factor SV processes, or SV di®usions
with jumps. Alternative models were also proposed in recent years: they include volatility
models of the Ornstein-Uhlenbeck type but with L¶evy innovations (Barndor®-Nielsen and
Shephard, 2001) and stochastic volatility models with long memory in volatility (Breidt,
Crato and de Lima (1998)) and Comte and Renault (1998)).

The statistical ¯t of the underlying process and the econometric complexities associated
with it should not be the only concern, however. An important issue for option pricing is
whether or not the models deliver closed-form solutions. We will therefore discuss if and
when there exists a trade-o® between obtaining a good empirical ¯t or a closed-form option
pricing formula.The dynamics of the underlying fundamental asset cannot be related to
option prices without additional assumptions or information. One possibility is to assume
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that the risks associated with stochastic volatility or jumps are idiosyncratic and not priced
by the market. There is a long tradition of this, but most recent empirical work clearly
indicates there are prices for volatility and jump risk (see e.g. Andersen, Benzoni and Lund
(2002), Chernov and Ghysels (2000), Pan (2002), among others). One can simply set values
for these premia and use the objective parameters to derive implications for option prices as
in Andersen, Benzoni and Lund (2001). A more informative exercise is to use option prices
to calibrate the parameters under the risk neutral process given some version of a nonlinear
least-squares procedure as in Bakshi, Cao and Chen (1997) and Bates (2000). An even more
ambitious program is to use both the time series data on stock returns and the panel data
on option prices to characterize the dynamics of returns with stochastic volatility and with
or without jumps as in Chernov and Ghysels (2000), Pan (2002), Poteshman (2000) and
Garcia, Lewis and Renault (2001).

Whether one estimates the objective probability distribution, the risk neutral or both,
there are many challenges in estimating the parameters of di®usions. The presence of latent
volatility factors make maximum likelihood estimation computationally infeasible. This is
the area where probably the most progress has been made in the last few years. Several
methods have been designed for the estimation of continuous time dynamic state-variable
models with the pricing of options as a major application. Simulation-based methods have
been most successful in terms of empirical implementations. That includes the indirect
inference and e±cient methods of moments of Gouri¶eroux, Monfort and Renault (1993)
and Gallant and Tauchen (1996) respectively, and several procedures discussed by Johannes
and Polson (2002) as well as AÄ³t-Sahalia, Hansen and Scheinkeman (2002) in this Handbook.
Another approach is to use implied state methods. While Pastorello, Patilea and Renault
(2003) base an indirect inference approach on Black-Scholes implied volatilities, Pan (2002)
uses the Fourier transform to derive a set of moment conditions pertaining to implied states.
Renault and Touzi (1996), Patilea and Renault (1997) and Renault (1997) propose iterative
and recursive procedures which extend the EM (expectation-maximization) methodology
to maximum likelihood contexts where it usually does not apply. Pastorello, Patilea and
Renault (2003) propose a general methodology of iterative and recursive estimation in
structural non-adaptive models which nests all the previous implied state approaches.

Nonparametric methods have also been used extensively. Several studies aimed at
recovering the risk-neutral probabilities or state-price densities implicit in option or stock
prices. For instance, Rubinstein (1996) proposed an implied binomial tree methodology to
recover risk-neutral probabilities which are consistent with a cross-section of option prices.
AÄ³t-Sahalia and Lo (1998) use a kernel estimator of the volatility function in a Black-
Scholes type model. Stutzer (1996) uses an approach called canonical valuation which
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uses past return data and possibly but not necessarily option price data to estimate the
payo® distribution at expiration. Another approach consists in estimating directly the
option pricing function with nonparametric methods. Hutchinson, Lo and Poggio (1994),
Broadie, Detemple, Ghysels and Torrµes (2000a,b), and Garcia and Gen»cay (2000) follow
this route. An important issue with the model-free nonparametric approaches is that the
recovered risk-neutral probabilities are not always positive and one may consider adding
constraints on the pricing function or the state-price densities. For example, AÄ³t-Sahalia
and Duarte (2003) impose monotonicity and convexity restrictions using a nonparametric
method based on locally polynomial estimators.

Bates (2000), among others, shows that risk-neutral distributions recovered from option
prices before and after the crash of 1987 are fundamentally di®erent whereas the objective
distributions do not show such structural changes. Before the crash, both the risk neutral
and the actual distributions look roughly lognormal. After the crash, the risk-neutral
distribution is left skewed and leptokurtic. A possible explanation for the di®erence is
a large change in the risk aversion of the average investor. Since risk aversion can be
recovered empirically from the risk neutral and the actual distributions, AÄ³t-Sahalia and
Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002) estimate preferences for
the representative investor using simultaneously S&P500 returns and options prices for
contracts on the index. Preferences are recovered based on distance criteria between the
model risk neutral distribution and the risk neutral distribution implied by option price
data.

Another approach of recovering preferences is to set up a representative agent model and
estimate the preference parameters from the ¯rst-order conditions using a GMM approach.
While this has been extensively done with stock and Treasury bill return data (see Hansen
and Singleton (1982), Epstein and Zin (1991) among others), it is only recently that Garcia,
Luger and Renault (2003) estimated preference parameters in a recursive utility framework
using option prices. In this survey we will discuss under which statistical framework option
pricing formulas are preference-free and risk-neutral valuation relationships (Brennan, 1979)
hold in a general stochastic discount factor framework (Hansen and Richard (1987)). When
these statistical restrictions do not hold, it will be shown that preferences play a role. Bates
(2001) argues that the overall industrial organization of the stock index option markets is
not compatible with the idealized construct of a representative agent. He therefore proposes
an equilibrium analysis with investor heterogeneity.

Apart from statistical model ¯tting, there are a host of other issues pertaining to the
implementation of models in practice. A recent survey by Bates (2003) provides an overview
of the issues involved in empirical option pricing, especially the questions surrounding data
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selection, estimation or calibration of the model and presentation of results.
The price of a derivative security is determined by the risk factors a®ecting the dynamic

process of the underlying asset. We start the survey with discrete time models based on
the key notion of stochastic discount factor. The analysis in section 2 allows us to discuss
many issues, both theoretical and empirical in a relatively simple and transparent setting.
Sections 3 and 4 deal with continuous time processes. Section 3 is devoted to the subject of
modelling the so-called objective probabilitymeasure, and section 4 discusses how to recover
risk neutral probability densities in a parametric continuous time setting. Nonparametric
approaches to pricing, hedging and recovering state price densities are reviewed in section
5.

2 Option pricing, market completeness and preferences

Since the seminal work of Black and Scholes (1973) it is customary to price options via
perfect replication in complete markets and compute derivative prices in a hypothetical
market in which agents have risk neutral preferences. Option pricing strategies are therefore
based on the derivation of risk neutral valuation relationships (henceforth called RNVR) to
adopt the terminology introduced by Brennan (1979). Since the work of Black and Scholes
(1973) and Merton (1973) it is often argued that a continuous time setting is particularly
suited for option pricing.1 In the typical Black-Scholes and Merton continuous time setting
of di®usions the RNVR principle consists, by virtue of the Girsanov theorem, in changing
only the drift term of the underlying asset to the risk-free rate of return and keeping the
di®usion term intact.2 In the general di®usion case a number of sources of incompleteness
are introduced via unhedgeable risks (like stochastic volatility and jump risk). In such cases
the basic RNVR and Girsanov ideas remain, yet some well-suited risk premia associated
with the various sources of unhedgeable risk are introduced. Consequently, the general
di®usion setting naturally suggests that option pricing formulas only depend on potentially
observable parameters and can be derived only from some rather weak assumptions about
investor preferences. In particular, it is commonly assumed that the risk premium of the

1See for instance recent discussions regarding continuous time di®usion models and option pricing by

Bertsimas, Kogan and Lo (2000) who quantify the approximation errors of discrete time by characterizing

the asymptotic distribution of the replication errors that arise from continuous time delta-hedging derivative

securities in discrete time. Along di®erent lines, AÄ³t-Sahalia (2001) examines similar issues for a class of

Markov di®usions while Andreou and Ghysels (2001) consider a general class of continuous time L¶evy

processes.
2See for example Du±e (2001), Merton (1992), among others, for a discussion of derivative security

pricing in continuous time.

5



underlying asset (as characterized by the net expected return) does not play a direct role
in determining the value of derivative contracts. Generally speaking, the link between
market completeness and RNVR is often overstated, as the validity of the RNVR for
di®usion models has much more to do with speci¯c distributional features of di®usion
models than with market completeness. This has been stressed recently by Duan (2001)
who put forward a semi-recombined binomial lattice to show that market completeness
does not imply RNVR.

Despite the perceived convenience of continuous time models we will use the discrete
time approach to characterize all the relevant situations for option pricing: cases where
RNVR prevails, violations of RNVR which do not preclude preference-free option pric-
ing and ¯nally, cases where an estimation of preference parameters, and possibly also of
investors beliefs, is explicitly needed for option valuation.3

Following the modern approach in ¯nancial econometrics, as in the recent book by
Cochrane (2001), we will rely on the unifying framework provided by the stochastic discount
factor (SDF) paradigm put forward by Hansen and Richard (1987) to distinguish all these
cases. While the common continuous time setting certainly simpli¯es a number of issues,
it will be made clear that the SDF framework helps us understand some fundamental
problems about option pricing regardless of the continuous time or discrete time settings.
In particular, we will use discrete time modelling to argue that completeness is far to be
necessary for RNVR.

This section is organized as follows. We will ¯rst summarize the SDF paradigm before
considering the di®erent situations of interest for option pricing. We start from the popular
preference-free binomial option pricing model and show how implied binomial trees can
be understood through the SDF approach. Second, we will discuss a quite large set of
distributional assumptions (including GARCH option pricing) which guarantee RNVR.
This characterization will motivate the typical violations of RNVR put forward in this
chapter. These violations will basically involve the existence of a number of state variables,
which are relevant for option valuation but are not instantaneously observed, neither by the
econometrician nor by the investors. This will lead us to discuss the issues of leverage e®ects,
investors' beliefs and learning in general multi-period discrete time models. To conclude
the section we discuss how to nest common continuous time option pricing formulas in the
general framework proposed here.

3See for instance Pliska (1997) for a comprehensive treatment of discrete time asset pricing models,

including option pricing.
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2.1 The SDF paradigm over one period

When asset markets are frictionless, Harrison and Kreps (1979) and Chamberlain and
Rothschild (1983) show that portfolio prices can be characterized as a continuous linear
valuation functional that assigns prices to the portfolio payo®s. Linearity and continuity
correspond to the common \law of one price" assumption, that is a weak version of a no
arbitrage condition involving limit series of payo®s. Hansen and Richard (1987) revisit
this property in the presence of conditioning information. They work with a Hilbert space
structure on the vectorial space Gt+1 of possible payo®s at time (t + 1): The space is
characterized by the conditional scalar product, that is the L2 structure corresponding to
conditional expectations of payo®s at time (t + 1) given the information Jt available to
investors at time t. Their fundamental theorem shows that the price at time t of any payo®
gt+1 2 Gt+1; denoted ¼t(gt+1) can be written as:

¼t[gt+1] = E[(mt+1)(gt+1)jJt] = Et[(mt+1)(gt+1)]: (2.1)

The variablemt+1 is by de¯nition SDF admissible for the set Gt+1 of payo®s. Note that
only one among the admissible SDFs is an element of the space Gt+1 of payo®s. It is the
orthogonal projection m¤

t+1 on Gt+1 of any admissible SDF mt+1. If we consider the set
G1+1(g) of payo®s contingent to a given primitive payo® gt+1, that is the set of all squared
integrable functions h [Jt; gt+1] of this payo®, we have:

m¤
t+1 = Et[mt+1jgt+1] = Et[mt+1jJt; gt+1]: (2.2)

Hansen and Richard (1987) show that it is su±cient to check that a particular admissible
SDF is almost surely positive to be sure that the pricing functional ¼t (¢) has no arbitrage
opportunities on Gt+1. Conversely, no arbitrage implies that the SDF m¤t+1 in (2.2) is posi-
tive almost surely. Therefore, without relying on any assumption of completeness, absence
of arbitrage in the set of contingent claims corresponds to the existence of a unique positive
SDF which is a function of the primitive payo®s. Note that these payo®s may have been
generated by a stochastic volatility process with jumps, or any of other processes considered
later in this chapter. Under market incompleteness we can de¯ne a risk neutral probability
measure, as in Harrison and Kreps (1979), to compute the price of any contingent claim
of payo® ht+1 = h(Jt; gt+1) as: ¼t[ht+1] = Et[(m¤

t+1)(ht+1)] = E¤t [B(t; t + 1)ht+1]; where
B(t; t + 1) = Et[m¤

t+1] is the price at date t of a zero-coupon bond which delivers one
dollar at date (t+1): The (conditional) risk neutral probability measure Q¤ (which in turn
de¯nes the conditional expectation operator E¤t ) is de¯ned from the historical one Q by
the positive density function (m¤

t+1)=B(t; t +1).
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2.2 Empirical pricing kernels

We discuss in this subsection some empirical strategies which have been proposed to cal-
ibrate the risk neutral probability measure from option prices data without relying on
speci¯c measures of the pricing kernel like some parametric functions of the aggregate con-
sumption process or the market return. This general principle can be illustrated in the
simplest case of a binomial model. If it is known at time t that the payo® gt+1 can take
only two values (ut:gt) and (dt:gt), an application of the SDF formula for any contingent
claim ht+1 = at + bt:gt+1 gives:

¼t[ht+1] = Et[(mt+1)(ht+1)] = atB(t; t+ 1) + bt¼t(gt+1):

where at and bt are de¯ned as solutions of : h(Jt; ut:gt) = at + bt:ut:gt and h(Jt; dt:gt) =
at + bt:dt:gt: Therefore, if one de¯nes a \probability"p¤t as the solution of:

¼t[gt+1] = B(t; t+1)[p¤t :ut:gt + (1¡ p¤t)dt:gt] (2.3)

and uses this in the expression of ¼t[ht+1], one obtains:

¼t[ht+1] = B(t; t+ 1)[p¤th(Jt; ut:gt) + (1¡ p¤t)h(Jt; dt:gt)]: (2.4)

Hence, the SDF approach provides a simple proof of classical option pricing formulas like
the binomial option pricing formula of Cox, Ross and Rubinstein (1979). The risk neutral
probabilities p¤t and(1 ¡ p¤t) of the two states of nature (ut:gt) and (dt:gt) can be easily
computed from (2.3), that is from the observation of the underlying asset price, and then
provide an empirical pricing kernel to value any derivative asset according to (2.4).

Typically, the relevant set of states contains more than two elements and the above
methodology has to be generalized for the purpose of empirical pricing. The general frame-
work of SDF pricing allows for any generalization within a one-period setting. The implied
binomial tree method of Rubinstein(1994) involves possible outcomes Kit = ®itgt; i =
0; 1; : : : ; I + 1 at time t for the underlying asset at time (t + 1). They are obtained from
the observed strike prices Kit; i = 1; :::; I (K1t <K2t < ::: < KIt) of options quoted at time
t with maturity (t+ 1) completed by KI+1;t > KIt and K0I <K1t.

The observation at time t of market prices B(t; t + 1) of the bond, ¼t[gt+1] of the
underlying asset, and ¼t[Max(0; gt+1 ¡ Kit)] of European calls written on this asset with
strike prices Kit; i = 1; : : : ;I is equivalent to observing the prices ¼t[g¤i;t+1] of the (I + 2)
digital options whose payo®s g¤i;t+1 are respectively Kit = ®itgt; i = 0; 1; : : : ; I + 1 when
gt+1 = ®itgt; and zero otherwise. The two sets of (I + 2) payo®s are linked by a one-to-
one linear relationship and, by the law of one price, their prices should ful¯ll the same
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relationship. For the sake of notational simplicity, we will then consider, without loss of
generality, that the prices of these digital options are observed instead of the prices of
standard European calls. The argument developed above in the genuine binomial model
(I = 0) can then be generalized to any contingent claim ht+1 = at + §I+1i=1 bit:g¤it+1:The
pricing formula becomes:

¼t[ht+1] = atB(t; t+ 1) + §I+1i=1 bit¼t[g¤i;t+1] = B(t; t+ 1)E¤t [ht+1]

where the expectation operator E¤t [:] is computed with the risk neutral probabilities (p¤it)0·i·I+1;
de¯ned by: ¼t[g¤i;t+1] = B(t; t+1)[p¤it:®it:gt+(1¡p¤it)0]; i = 1; 2; : : : ; I+1 and p¤0t = 1¡§I+1

i=1p¤it:
Hence, the observation of I option prices written on the same asset with the same maturity
date, in addition to the observation of the bond price for the same maturity and the under-
lying asset price, allows us to recover a set of implied risk neutral probabilities (p¤it)0·i·I+1

and in turn an empirical pricing kernel yielding the price ¼t[ht+1] of any claim contingent
on the same asset with the same maturity by :

¼t[ht+1] = B(t; t+ 1)E¤t [ht+1] (2.5)

The implied probabilities have been constructed under the restrictive assumption that the
support of the risk neutral probability distribution is limited to the set of observed strikes
of options quoted at time t with maturity (t+1), augmented by the two extreme valuesK0t

and KI+1;t to rationalize respectively the positive price of the deepest in- and out-of-the
money options. However, Rubinstein (1994) argues that the validity of the pricing kernel
(2.5) is slightly more general, since possible values of the underlying asset payo® gt+1 may
include other points than the values ®itgt; i = 0; 1; : : : ; I+1 provided the corresponding risk
neutral probabilities of any state between Ki;t and Ki+1;t are equal. This argument raises
several issues that we will discuss in more detail in section 5 dedicated to nonparametric
approaches.

2.3 Loglinear pricing

Along with the binomial model, loglinear pricing represents a central tenet of option pricing
in discrete time. It is intimately related to the RNVR concept introduced by Brennan
(1979). A RNVR consists of a pricing formula of the type:

¼t[ht+1] = B(t; t +1)Et[h(Jt; S¤t+1)] (2.6)

where S¤t+1 is a rescaled value of the underlying asset price de¯ned by:B(t; t + 1)S¤t+1 =
[St+1=EtSt+1]St: In other words, S¤t+1 is proportional (given Jt) to St+1 but the mean of its

9



distribution is St=B(t; t+1). The other parameters of the conditional (given Jt) probability
distribution of St+1 are identical to the objective ones.

Therefore, like the empirical pricing kernel of subsection 2.2, the RNVR provides a
speci¯cation of the option pricing formula which no longer depends explicitly on preference
parameters. These preference parameters are hidden, ¯rst in the price B(t; t + 1) of the
pure discount bond, and second in the underlying asset through the risk premium B(t; t+
1)EtSt+1=St. However, the two formulas (2.5) and (2.6) are signi¯cantly di®erent and it is
worthwhile to examine under what circumstances the RNVR might produce a well-founded
alternative preference-free option pricing principle.

By focusing on the SDF provided by a time-separable utility function of a representative
agent mt+1=¯u0(Ct+1)=u0Ct); with the additional assumption that [log(Ct+1); log(St+1)] is
jointly normal conditional on Jt, Brennan (1979) shows that a necessary and su±cient
condition for RNVR is that the marginal utility function u0 is a power function. However,
one should note that the role of the power utility function is to obtain joint conditional
normality of [log (u0(Ct+1)) ; log(St+1)] from that of [log(Ct+1); log(St+1)]. In other words,
the crucial assumption to obtain RNVR in this one-period setting is:

Assumption 2.1: (Conditional Log Normality) [log(mt+1); log(St+1=St)] is conditionally
normal given Jt:

The option pricing literature contains numerous well-known examples of models involving
Assumption 2.1. When one writes explicitly the SDF corresponding to a one-period Black-
Scholes option pricing model, one realizes (see e.g. Buraschi and Jackwerth (2001)), that
log(mt+1) is an a±ne function of the normal log-return log(St+1=St). Therefore, Assump-
tion 2.1 is ful l̄led in the Black-Scholes case with a degenerate joint normal distribution.
Morevover, as noted by Heston and Nandi (2000), the GARCH option pricing model of
Duan (1995) assumes that the value of a call option one period prior to expiration obeys
the Black-Scholes-Rubinstein formula. Hence, GARCH option pricing is also based on a
degenerate conditional normal probability distribution of [log(mt+1); log(St+1=St)] given Jt.
The only di®erence with the Black-Scholes geometric random walk is that the conditional
variance of log(St+1=St) given Jt will now depend explicitly on Jt.4

We can conclude that all the aforementioned option pricing models are indeed simple
applications of RNVR, since Assumption 2.1 implies RNVR. To prove this statement, it
su±ces to extend the proof in Brennan (1979), using the SDF formulation and Girsanov

4Garcia and Renault (1998a) and Kallsen and Taqqu (1998) discuss in further detail the maintained

assumptions of GARCH option pricing both in terms of equilibrium and arbitrage.
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theorem (which makes clear the analogy with option pricing in the context of di®usion
models; see Renault (2001)). It is based on the following formula implied by the joint
normality assumption of [log(mt+1); log(St+1)] given Jt. For ht+1 = h [Jt; St+1] = ht(St+1):

¼t[ht+1] = Et[(mt+1) (ht+1)] = Et (mt+1)Et fht[St+1 exp[Covt(log(mt+1); log(St+1))]]g :
(2.7)

Using the bond pricing equation and the underlying asset pricing equation, one remarks
that: exp[Covt(log(mt+1); log(St+1))] = [B(t; t + 1)EtSt+1]¡1St; which is the scale factor
put forward in (2.6). This con¯rms that option pricing formulas are preference-free since
the relevant characteristics of the SDF are hidden in the bond price and in the underlying
asset price.

For example, with ht+1 = h(St+1) = max[0; St+1 ¡ K]; the payo® of an European call,
we get:

¼t(ht+1) = B(t; t+ 1)Etmax[0; S¤t+1 ¡K]

where:

log
µ
S¤t+1

St

¶
=

µ
St+1

St

¶
¡ log

Et(St+1)B(t; t+ 1)
St

In a Black-Scholes (BS hereafter) world, log(St+1=St) follows a normal distribution with
mean log(Et(St+1)=St) ¡ ¾2=2 and variance ¾2: Then log(S¤t+1=St) follows a normal distri-
bution with mean ¡ logB(t; t +1) ¡ ¾2=2 and variance ¾2: Straightforward computations
of expectations with normal distributions give the BS option pricing formula:

¼t(ht+1) = BS[St; ¾2]

where:

BS[St; ¾2] = StÁ(d1)¡KB(t; t+ 1)Á(d2)

with: d1 = (1=¾) log(St=KB(t; t+ 1)) + ¾=2 and d2 = d1 ¡ ¾:
Generally speaking, preference-free option pricing can be obtained within two alterna-

tive settings: either a linear factor model with an a±ne regression of mt+1 on St+1 for the
conditional expectation Et[mt+1jSt+1] given either a normality or a multinomial assump-
tion, or a log-linear factor model with an a±ne regression of Log(mt+1) on Log(St+1) for
the conditional expectation Et[logmt+1jSt+1]: The basic intuition is that, without such a
linearity property of the conditional expectation, the price of contingent claims with pay-
o®s that are nonlinear functions of the underlying asset payo®, cannot be straightforwardly
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deduced from the price of the underlying asset. Even though it is worth stressing that the
aforementioned (log)normality properties are only conditional and therefore do not pre-
clude conditional heteroskedasticity and unconditional leptokurticity of asset returns (as
in the GARCH option pricing model), it is still empirically relevant to think about a way
to relax these normality assumptions. Since the seminal paper of Clark (1973), a versatile
tool to relax normality for asset (log) returns is to introduce mixture components.

2.4 Mixture models of option pricing

In this subsection we will further explore the log-linear model but we will add a mixture
component to the conditioning set and maintain the following assumption:

Assumption 2.2: (Conditional Log Normality with mixture) There exists a latent state
variable Ut+1 such that: [log(mt+1 ); log(St+1=St)] is conditionally normal given Jt and Ut+1:

Hence, the conditional probability distribution of [log(mt+1); log(St+1=St)] given Jt is a
mixture of normals with a mixture component Ut+1: The mixture model is quite standard
and contains as particular cases the widely used stochastic volatility model ¯rst proposed
by Taylor (1986) and ¯rst used for option pricing by Hull and White (1987) and extended
by Heston (1993).5 However, in contrast with some standard option pricing models under
stochastic volatility, we have to assume here, in order to relax RNVR pricing, that the
latent variable Ut+1 is unobserved not only by the econometrician but also by investors.
An intuitive rationalization of this assumption is the genuine uncertainty surrounding the
actual state of the economy or the business cycle at some points in time.

In this context, Girsanov's theorem can only be applied with the conditional probability
distribution given Ut+1 and the pricing formula is now given by:

¼t[ht+1] = Et fEt[mt+1ht(St+1)jUt+1]g
= Et[mt+1jUt+1]Et fht[St+1 exp[Covt[log(mt+1); log(St+1=St)jUt+1]]]jUt+1g (2.8)

By using both the bond and stock pricing equations, we now arrive at a pricing formula
that generalizes the RNVR formula (2.6):

¼t[ht+1] = Et[B¤(t; t+ 1)]Et
©
ht[S¤t+1:»t;t+1]jUt+1

ª
(2.9)

5Note that the class of L¶evy-Stable distributions is also consistent with Assumption 2.2 when the mixture

component is the variance of the normal viewed as a positive L¶evy-stable distribution. Generally speaking,

the mixture component is a way to capture observed fat tails in the conditional probability distribution of

log-returns given Jt . For further discussion see next section.
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where S¤t+1 is a rescaled value of the underlying asset price now de¯ned by:

B¤(t; t+ 1)S¤t+1 =
St+1
EtSt+1

:St: (2.10)

with B¤(t; t+ 1) = Et[mt+1jUt+1] and »t;t+1= Et[mt+1(St+1=St)jUt+1]:
Note that B¤(t; t+1) and St»t;t+1 can be interpreted respectively as the bond and stock

price in the ¯ctitious world where the mixing variable Ut+1 would be known at time t by the
investors. By the law of iterated expectations, the expected value at time t of these ¯ctitious
prices coincide with the actual prices: B(t; t + 1) = Et[B¤(t; t + 1)] and Et[»t;t+1] = 1:
Therefore the pricing formulas (2.9) and (2.10) generalize RNVR in two dimensions, in the
sense that the observed bond and stock prices are both replaced by functions of the state
variables. These functions will coincide with observed bond and stock prices if and only if
there is no mixing e®ect in the joint probability distribution of the SDF and the stock price.
Otherwise, the subordination of this distribution and in particular the characteristics of the
SDF (conditional mean, variance and covariance with the asset return) will enter explicitly
in the option pricing formula; the option pricing formula is no longer preference-free.6 This
mixture model appears to be su±ciently versatile to capture some stylized facts about the
volatility smile at a given point in time.

2.5 Volatility smiles, smirks and frowns in a mixture model

Following Garcia, Luger and Renault (2001, 2003) we apply in this subsection the mixture
model to the pricing of a European call with payo®: h(St+1) = Max[0; St+1 ¡ K ]: For
simplicity, we will assume that there is no interest rate risk: B¤(t; t + 1) = B(t; t + 1).
Therefore, following (2.9), the price of a European call is given by:

¼ht = Et[Et[B(t; t+ 1)Max[0; S¤t+1»t;t+1 ¡K]jUt+1]]

Given Ut+1; we are in a Black-Scholes risk neutral world. Therefore, we obtain the following
Generalized Black-Scholes (GBS) option pricing formula:

¼ht = Et[BS [St»t;t+1; ¾2(Ut+1)]] (2.11)

where, inside the standard BS option pricing formula, the current value of the stock price
St has been replaced by St»t;t+1 and the constant volatility parameter ¾2 has been replaced

6To make the link with linear factor pricing, note that the mixture e®ect in the probability distribution

of the underlying asset return (including its \beta" coe±cient with respect to the SDF) is also responsible

of the violation of a CAPM-like pricing formula for the underlying asset. In particular, RNVR implying

»t;t+1 = 1, means that: Et [St+1=St] = [B(t; t + 1)]¡1 exp[Covt[log(mt+1); log(St+1=St)]:
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by the stochastic volatility ¾2(Ut+1) = V art[log(St+1=St)jUt+1]. The expectation operator
in (2.11) is with respect to the joint probability distribution of »t;t+1 and ¾2(Ut+1) given
the information Jt .

Even though the GBS formula (2.11) is derived in a discrete time context, a similar
pricing formula was derived by Romano and Touzi (1997) in the context of risk neutral
continuous time models of stochastic volatility with leverage, as in Heston (1993), and
by Fouque, Papanicolaou and Sircar (2000), where the variable »t;t+1 plays a similar role.
However, the GBS formula (2.11) is even more convenient for empirical pricing since the
expectation operator is considered with respect to the historical probability measure instead
of the aforementioned formulas involving an equivalent martingale measure. Willard (1997)
stressed in the context of the Heston (1993) model, that option pricing formulas viewed
as expectations of Black-Scholes prices (and associated greeks derived as expectations of
BS greeks) are particularly well-suited for Monte-Carlo simulation of option prices, since
they become a conditional Monte Carlo where only the state variable process needs to be
simulated.

The GBS formula is useful to interpret the observed shapes of the volatility curve ob-
tained when BS implied volatilities ¾imp;t, de¯ned by ¼ht = BS [St; ¾imp;t(xt)]; are plotted
against moneyness measured as xt = Log[St=KB(t; t+1)]: Before 1987, this implied volatil-
ity curve had most often a U-shaped pattern and was dubbed volatility smile. Renault and
Touzi (1996) and Renault (1997) ¯nd a rationalization of this symmetric curve. In the
absence of the scaling factor »t;t+1, they show that if:

¼ht = Et[BS[St; ¾2(Ut+1)]]; (2.12)

then the volatility smile is U-shaped, symmetric (¾imp;t (xt) = ¾imp;t (¡xt)) and with the
minimum at-the-money (when xt = 0). It is important to note that the symmetry of the
volatility smile must be considered with a logaritmic scale for moneyness. Hence, any pair
of strike prices a with geometric average equal to the forward stock price produce the same
option price.

Since the crash of 1987, observed volatility smiles are often skewed and even reversed,
yielding smirks and frowns. In the context of GBS pricing, the observed asymmetries of
the volatility curve are explained by the fact that »t;t+1 is genuinely random, even though
it is equal to one in expectation. Therefore, the asymmetries are due to a mixture e®ect
either in the distribution of the return itself (Et[St+1jUt+1] 6= Et[St+1]) or in its covariation
with the SDF ([Covt[log(mt+1); log(St+1=St)jUt+1]; which create several kinds of leverage
e®ects.
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It is important to note that the option pricing formula is no longer preference-free since
the characteristics of the SDF appear explicitly through its covariance with the underlying
asset return. Therefore, preference parameters play an explicit role in the option pricing
formula. Garcia, Luger and Renault (2001a) use an intertemporal option pricing model
with recursive utility and show how asymmetries of the smile are related to the state
variable process and to the preference parameters. In Garcia, Luger and Renault (2003),
the same model is estimated with option and stock return data on the S&P 500. They
provide convincing evidence in favor of the GBS model and the estimated values for the
preference parameters are quite reasonable. Guidolin and Timmermann (1999) explain
the empirical biases of the Black-Scholes option pricing model by Bayesian learning e®ects
about the state variable, whereas the state variable was known after one period in the
previous model. In a model with both learning and leverage e®ect, David and Veronesi
(2002) show that investors' uncertainty about the drift of a ¯rm's fundamentals a®ects
option prices through its e®ect on stock volatility and the covariance between returns and
volatility.

One way to understand the strength of these e®ects is to recall that the BS formula
is convex with respect to the underlying asset current price. Therefore, by the convexity
inequality, since Et[»t;t+1] = 1, the GBS price should be greater than the price (2.12) corre-
sponding to symmetric volatility smiles, unless the correlation between »t;t+1 and ¾2(Ut+1)
would reverse the Jensen inequality. Therefore, GBS should be equivalent to replacing the
current asset price by a greater (deterministic) value. Manaster and Rendleman (1982),
Longsta® (1995), and Garcia, Luger and Renault (2002) provide some evidence of such im-
plied index values often greater than the current spot value. Renault (1997) shows through
simulations in a Hull and White (1987) model that even very small di®erences (1 percent)
between the implied stock price and its value used to compute implied volatilities will
produce severe asymmetries corresponding to widely observed smirks and frowns.

2.6 Multiperiod SDFs and semi-group pricing

The original analysis of Hansen and Richard (1987) was developed in the framework of
one-period securities. In this subsection we show that this setting can be extended to
multiperiod securities. The simplest is to consider a two-period environment. The price at
time (t+1) of a time t+ 2 payo® ht+2 will be characterized by some SDF mt+2 such that:
¼t+1[ht+2]= Et+1[(mt+2)ht+2]. By the law of one price over two periods, the time t price
¼t[ht+2] for the time (t+ 2) ht+2 payo® should be:

¼t[ht+2] = Et[(mt+1)¼t+1[ht+2]] = Et[(mt+1)(mt+2)(ht+2)] (2.13)
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wheremt+1 is any SDF able to price a set of payo®s including ¼t+1[ht+2]: Therefore, a SDF

tmt+2 suitable to price at time t payo®s occurring at time (t + 2) will be de¯ned from
one-period SDFs by:

tmt+2 = (mt+1)(mt+2) (2.14)

This simple property is the basis of semi-group pricing developed in the context of
Markov models by Hansen and Scheinkman (2001).

2.6.1 Multiperiod state-dependent tree models

In order to extend to an intertemporal context the SDF pricing principle with state vari-
ables, we need to adapt the de¯nition of contingent claims. This intertemporal setting
needs to be adapted in the case of contingent claims. To parallel the one-period construct
of a unique SDF which is mimicked by a derivative asset payo®, it is not enough in a
multiperiod setting to condition on the gain process of the underlying asset. We need to
introduce, along with the current value of the underlying asset and the path of the underly-
ing asset returns, some state variables summarizing the information relevant for forecasting
future returns and SDFs, unless some serial independence is assumed. Therefore, to apply
the semi-group pricing (2.14) to the payo®s of a set of contingent claims, we allow for
path-dependent contingent claims, which depend on this extended information set.

Let us de¯ne a Jt-adapted stochastic process (Ut)t 1̧ of state variables. A derivative
asset payo® delivered at time (t+1) on a given non-dividend paying asset with price St at
time t can be characterized by a function ht+1 = h(U t+1

1 ; St+1); as opposed to the one-period
setting where ht+1 = h(Jt; gt+1). The main di®erence is that ht+1 not only depends on the
past history of the state variables U t1 = (U¿)1·¿·t ½ Jt but also on the future value Ut+1

which is unknown at time t when the market price ¼t (ht+1) is set. The extension of the
space of derivative payo®s ensures consistency between payo®s on consecutive dates. An
application of the intertemporal pricing rule (2.13) to a payo® ht+2 = h(U t+2

1 ; St+2) yields
a price ¼t+1[ht+2] = Et+1[(mt+2)ht+2] which should be written as a function of the state
information at time t+ 1; that is ¼t+1[ht+2] = f(U t+11 ; St+1); for some measurable function
f. This price can be written: ¼t+1[ht+2] = Et+1[(mt+2)h¤(U t+2

1 ; (St+2=St+1); St+1)]; where in
h¤ the return on the stock appears explicitly. A su±cient condition to obtain the required
form f(U t+1

1 ; St+1) is to make the two following assumptions which amount to a nonpara-
metric state-space model for asset returns and a given SDF:

Assumption 2.3: (Measurement) For any date t and a given sequence (mt) of SDFs, the
pair [mt+2; (St+2=St+1)] is independent of Jt+1 given U t+1

1 .
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Assumption 2.4: (Transition) For any date t; Ut+2 is independent of Jt+1 given U t+1
1 :

Since ¼t+1[ht+2] is a forecast at time (t+1) of [(mt+2)ht+2] = [(mt+2)h¤(U t+2
1 ; (St+2=St+1); St+1)],

it will in general involve some extra information relevant for forecasting returns and SFDSs
but not conveyed by the current value St+1 of the underlying asset price. Therefore, the
main role of state variables is to summarize the dynamics of SDFs and asset returns (As-
sumption 2.3). Without such a summary, one would be unable to apply the SDF paradigm
to multiperiod derivative asset pricing, except under the more restrictive assumption that
asset returns and SDFs are serially independent. Therefore, a complete market assumption
has been replaced by the assumption that the relevant sources of risk are summarized by
some state variables for the purpose of de¯ning contingent claim payo®s. Moreover, the
state variables also summarize their own dynamics, namely Assumption 2.4 implies that
asset returns and SDFs do not cause (in the Granger sense) the state variables. This is
a fairly natural assumption, for state variables are supposed to describe the exogenous
state of the environment. Assumption 2.4 is similar to the nonlinear factor structure intro-
duced by Bansal and Viswanathan (1993) (see their Assumption 1) to provide a nonlinear
extension of the Arbitrage Pricing Theory (APT) of Ross (1976).

Generally speaking, Assumptions 2.3 and 2.4 are valid for most option pricing models
with state variables, including discrete and continuous time stochastic processes (the latter
will be discussed in the next section). Assumptions 2.3 and 2.4 have been extensively
discussed for discrete time applications by Garcia and Renault (2001). Their discussion
elaborates in particular on Amin and Ng (1993), where the two forms of observability of
state variables by investors, either from the beginning or only at the end of the period,
were termed predictability and unpredictability respectively. Garcia and Renault (2001)
also emphasize that a typical discrete time application of this idea is the Markov switching
regime model of Hamilton (1989). Note also that, by analogy with the continuous time
literature, the role of these state variables has not only been described in terms of stochastic
volatility (when the state appears explicitly in the variance components) but also in terms
of jumps (when the state appears in the mean components). In addition, a binomial model
with one unobserved binary state variable is equivalent to the trinomial model considered
by Boyle (1988) and multinomial models with K state variables (Kamrad and Ritchken
(1991)) are also nested in this setting. The case of latent states in the context of Markov
switching models has been studied more recently by Chourdakis and Tzavalis (2001).

In this general setting, the unique one-period SDF mimicked by a derivative asset payo®
is m¤

t+1 = Et[mt+1jU t+1
1 ; St+1]. By virtue of the above assumptions, it is a deterministic
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function ¸[U t+1
1 ; (St+1=St); St] of the current value of the underlying asset price, of the un-

derlying return and of the realized path U t+1
1 of state variables. Moreover, the replacement

of mt+1 by m¤
t+1 does not introduce a violation of the fundamental Assumption 2.3. The

fact that the SDF m¤t+1 is a deterministic function only of a few \state variables" or \fac-
tors" U is similar to Bansal and Viswanathan (1993) Assumption 2, which they present as
the key requirement for a nonlinear APT.

So far the intertemporal framework yields m¤
t+1; the unique SDF mimicked by a deriva-

tive asset payo®. However, since Ut+1 has not been observedyet by investors at time t,
a state-dependent analogue of (2.5) can only be derived under the following additonal
assumption.
Assumption 2.5: (No leverage e®ect) (mt+1; (St+1=St)) is conditionally independent of Ut+1

given U t1.

Leverage e®ect, as ¯rst pointed out by Black (1976), is akin to an instantaneous causality
relationship between return and volatility and is a particular case of the e®ects precluded
by Assumption 2.5. Option pricing in a more general setting which does not preclude this
type of e®ect will be considered below as an extension of mixture models for the loglinear
framework.

The fundamental implication of Assumptions 2.3 to 2.5 for the purpose of option pricing
is the computation of the risk-neutral density function over two periods as the product of
single-period density functions:

[B(t; t+ 1)B(t +1; t+ 2)]¡1 tm¤
t+2 = [B(t; t+1)B(t+ 1; t+ 2)]¡1m¤

t+1m¤t+2 (2.15)

The multiplicative pricing rule (2.15) results from the application of Assumptions 2.3, 2.4
and 2.5. It is particularly well-suited for tree-models, as it implies that the risk neutral
probabilities can be multiplied along the tree. Hence, the role of Assumptions 2.3, 2.4
and 2.5 is to guarantee that the relevant forecasting environment remains multinomial in
intertemporal settings (with a ¯xed number of states of the world for returns at each node)
when one has to forecast at time t not only the underlying asset price but also the future
price ¼t+1[ht+2] = Et+1[(mt+2)ht+2] of contingent claims written on it. For instance, the
intertemporal Cox, Ross and Rubinstein (1979) binomial option pricing model corresponds
to (2.15) when the risk neutral densities are characterized by the probabilities p¤t : Note that
we have a very general version of this model since, at each date, the two possible values
of the return and the associated risk neutral probability may depend on state variables.
Without state variables, consecutive returns become independent and one recovers the
standard model.
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It should be noted however, that the multiplicative pricing rule (2.15) does not provide
a well-suited factor structure for long horizons when short term pricing is described by a
linear factor model. The loglinear factor structure will be better suited for such a task.

2.6.2 Multiperiod loglinear pricing with state variables

To obtain a GBS formula in a multiperiod context, one only needs, in addition to previous
Assumptions 2.3 and 2.4, a joint log-normality assumption of mt;T and ST=St given a
path UT1 of state variables which extends Assumption 2.2.7 If the conditional probability
distribution of (logmt+1; log St+1=St) given U t+1

1 is, for t = 1; :::; T ¡ 1, assumed to be a
bivariate normal:

N

2
4

0
@ ¹mt+1

¹st+1

1
A ;

2
4 ¾

2
mt+1 ¾mst+1

¾mst+1 ¾2st+1

3
5

3
5 :

one obtains the following intertemporal GBS option pricing formula which extends (2.11)
to a multiperiod setting with possibly stochastic interest rates:

¼t
St

= ¼t(x) = Et
½
»t;T©(d1(x)) ¡ B

¤t; T)
B(t; T)

e¡x©(d2(x))
¾

(2.16)

where x = logSt=(KB(t; T )) and:

d1(x) =
x
¾t;T

+
¾t;T
2

+
1
¾t;T

log
·
»t;T
B(t; T )
B¤(t; T )

¸

d2(x) = d1(x)¡ ¾t;T with ¾2t;T =
T¡1X

¿=t

¾2s¿+1:

with

»t;T = E
·
tmT ¢

µ
ST
St

¶
jU T1

¸
= B¤(t; T )exp(

T¡1X

¿=t

¾ms¿+1)E [
ST
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jUT1 ]

and B¤(t; T) = E
£
tmT jU T1

¤
= exp(

PT¡1
¿=t ¹m¿+1 + 1

2
PT¡1
¿=t ¾2m¿+1):

To put this general option pricing formula into perspective, we will compare it to pric-
ing formulas based on equilibrium or absence of arbitrage. Concerning the equilibrium

7This assumption is somehow a consequence of a standard conditional central limit argument which can

be applied thanks to Assumption 2.3 and to the additivity property of the log SDF in (2.14) through an

arbitrary time scale given a path of state variables. Since Clark (1973), there is a long tradition of this

approach in ¯nancial econometrics. Clark (1973) stressed that non-normality is a puzzle when one has in

mind the geometric temporal averaging of the returns and a corresponding central limit theorem argument.

In this respect, log normality of returns can be invoked without any signī cant loss of generality once it is

recovered after conditioning on a su±cient number of state variables.
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approach, this setting is very general since it is based on a stochastic model for the SDF
which does not rely on restrictive assumptions about preferences, endowments, or agent
heterogeneity. Moreover, the semigroup property of the SDF is more general than the usual
product of intertemporal marginal rates of substitution in time-separable utility models.
Indeed, this factorization of the SDF accommodates non-separable or state-dependent pref-
erences. The preference features will appear in general explicitly in the option pricing for-
mula through the characteristics such as mean ¹m, standard deviation ¾m and covariation
¾ms of the SDF which are included in B¤(t; T) and »t;T . Note that B¤(t; T) and St»t;T can
be interpreted as respectively the bond price and the stock price in the ¯ctitious world
where the path of state variables U Tt would be known at time t by the investors. By the
law of iterated expectations, the expected value at time t of these ¯ctitious prices coincide
with the actual prices: B(t; T) = Et [B¤(t; T)] and Et

¡
»t;T

¢
= 1.

In contrast to the static mixture model described in subsection 2.4, it should be noted
that B¤(t; T ) is not known at time t as it depends on the future path of state variables
and consequently may not be preference-free. Preference parameters may be hidden in the
bond and stock prices which will be observed along the lifetime of the option. To see this,
¯rst note that by virtue of Assumptions 2.3 and 2.4:

8
<
:
B¤(t; T) =

QT¡1
¿=t B¤ (¿; ¿ + 1)

»t;T =
QT¡1
¿=t »¿ ;¿+1

(2.17)

The one-period \¯ctitious pricing" B¤ (¿ ; ¿ + 1) and S¿ »¿;¿+1 at time ¿ will coincide with
actual pricing B(¿; ¿+1) and S¿ if and only if there is no mixture e®ect at horizon one, that
is B¤ (¿ ; ¿ +1) and »¿;¿+1 only depend on the path U¿1 of state variables already observed
at time ¿ by the investors. Extending a terminology proposed by Amin and Ng (1993),
this case where

B¤(¿ ; ¿ +1) = E¿B¤(¿; ¿ + 1) = B (¿ ; ¿ + 1)

and
»(¿;¿+1) = E¿(»¿;¿+1) = 1

may be termed the predictable case. It is tantamount to Assumption 2.5 of no leverage
e®ect. Under this assumption:

8
<
:
B¤(t; T) =

QT¡1
¿=t B (¿; ¿ + 1)

»t;T = 1
(2.18)

and the GBS option pricing formula (2.16) is the conditional expectation of the Black-
Scholes price, where the expectation is computed with respect to the joint probability
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distribution of the rolling-over interest rate ¹rt;T = ¡PT¡1
¿=t log B (¿; ¿ +1) and the cumu-

lated volatility ¹¾t;T . This observation implies that the GBS option pricing formula also
nests the common option pricing formulas which are preference-free as only based on the
absence of arbitrage. In the most basic case, interest rates and volatility are deterministic
and one ¯nds the Black and Scholes (1973) and Merton (1973) formula. When volatility
is stochastic, ¹¾2t;T = V ar

£
log(ST=St)

¯̄
UT1

¤
is the discrete time analog of the integrated

volatility
R T
t ¾

2
¿d¿ and the GBS formula coincides with the Hull and White (1987) stochas-

tic volatility extension of Black-Scholes, in the particular case where the volatility risk is
not compensated. We will even be able to show in subsection 2.7 below that the most
popular continuous time stochastic volatility models with possible leverage e®ects and a
premium for the volatility risk (Heston, (1993), Pan (2002)) are nested in the GBS frame-
work. Finally, the GBS formula allows for stochastic interest rates as in Turnbull andMilne
(1991) and Amin and Jarrow (1992).

All the aforementioned preference-free option pricing formulas are usually obtained by
the absence of arbitrage in either a complete market setting, or an arbitrary choice of a
risk neutral probability measure with zero risk premium for latent state variables.

The very general SDF-based option pricing considered in this section does not pre-
clude incompleteness and points out in which cases this incompleteness may invalidate the
preference-free paradigm. The only case of incompleteness which matters in this respect is
the case of leverage e®ect which occurs when the conditions (2.18) are not ful¯lled.

The violation of these conditions leads to an explicit role of the preference parameters in
the GBS option pricing formula and generates mixture e®ects resulting in volatility smirks
and frowns.

2.7 From discrete time to continuous time models

In the previous subsections we emphasized, through the SDF approach, the similarity
between the formulas obtained in discrete and continuous time. In particular, we noted
that a mixture variable could produce an option pricing model with stochastic volatility
and jumps in returns. As we will see in the next section the jump-di®usion model is the
canonical model proposed for options written on a stock index. The resulting formulas
will look very much the same whether we set the model in discrete time or in continuous
time. We already mentioned that Romano and Touzi (1997) obtained at a formula which
can be written as (2.11) in a Heston (1993) stochastic volatility di®usion model. The
fundamental reason behind this similarity lies in the fact that the absence of arbitrage
ensures the existence of a state-price density (and conversely) and hence of a stochastic
discount factor. In the context of di®usion processes, Assumption 2.3 basically means (see
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Garcia and Renault (1998b) for a formal characterization) that the drift and the di®usion
terms of the log-stock index and the log-SDF are ¯xed when the state variables are ¯xed,
in order to recover, conditional on the state variables, the serial independence property of
the increments of the Brownian motion. Moreover, the argument can be extended to other
L¶evy processes, including the Poisson jump process (see Section 3 for a review). Generally
speaking, the continuous time analogs of Assumptions 2.3 and 2.4 are ful¯lled by all the
common continuous time option pricing models and this leads to option pricing formulas
similar to the GBS formula of (2.16).

To see this, let us just consider:

dSt =
£
r(Xt) +P St (Xt)

¤
Stdt+ ¾(Xt)StdW St (2.19)

where St is the stock index, W St is a standard Brownian motion, r(Xt) is the short term
interest rate process, P St (Xt) is the risk premium associated with the di®usive price shock
and Xt is a vector of exogenous state variables:

dXt = f (Xt)dt+ g(Xt)dWXt (2.20)

For the sake of expositional simplicity, a dividend process for the stock has not been made
explicit in the drift of (2.19). If such dividends exist, the genuine risk premium is the
sum of PSt (Xt) and of the dividend process. It is also worth noting that the exogeneity
of the state variables process Xt means that the drift and di®usion coe±cients in (2.20)
only depend upon Xt and not on St or on the SDF mt. The exogeneity assumption is
the continuous time analog of the no-Granger causality assumption 2.4 (see Comte and
Renault (1996) for a formal characterization) and does not preclude any kind of leverage
e®ects through instantaneous non zero correlations between W St and the components of
WXt : The continuous time analog of Assumption 2.3 about the pricing kernel mt amounts
to a speci¯cation:

d log(mt) = h(Xt)dt+ a(Xt)dWXt + b(Xt)dWX?t : (2.21)

whereWX?t is de¯ned by the instantaneous regression of the Brownian motion W St onWXt

W St = ½tW
X
t + (1¡ ½2t)1=2WX?t (2.22)

with ½tdt = Covt
£
dW St ; dWXt

¤
: Note that the continuous time notation (mt)t2[0;T ] leads

to a slight change of notation with respect to the previous subsections. By virtue of the
multiplicative rule (2.14), we will now denote by mt2=mt1 the SDF which gives the price at
time t1 of payo®s occurring at time t2 > t1.
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Equations (2.19), (2.20) and (2.21) when augmented with a Poisson jump component
(which would be easy to introduce) nests all the commonly used jump-di®usion option
pricing models that will be further discussed in Section 3 below. One can also easily derive
the associated GBS option pricing formulas and discuss their dependence on preference
characteristics, through the speci¯cation of risk premia associated to the various sources
of risk. Let us do this exercise in the simplest case of only one state variable, that is a
univariate process Xt.

Generally speaking, Assumptions 2.3 and 2.4 do not preclude the instantaneous corre-
lation coe±cient ½t to be a deterministic function of Xt (see Garcia and Renault (1998b)).
We will consider it here as a constant (½t = ½) for expositional simplicity.

As previously noted some characteristics of the SDF are hidden in the bond and in the
stock prices. To see this consider the pricing equation of a bank account:

mt = Et
·
mt+h exp

µZ t+h

t
r (X¿) d¿

¶¸
(2.23)

which implies that:
h (Xt) = ¡r (Xt)¡ 1

2
£
a2(Xt) + b2(Xt)

¤
(2.24)

Then, the stock pricing equation:

mtSt = Et [mt+h St+h] (2.25)

implies that: ¡
1¡ ½2

¢1=2 b (Xt) ¾(Xt) = ¡½a(Xt)¾(Xt) ¡ PSt (Xt) (2.26)

Equation (2.26) says that b(Xt) is fully de¯ned when two risk premia are speci¯ed: (1) The
risk premium P St (Xt) associated with the di®usive price shock, and (2) the risk premium
a(Xt)¾(Xt) associated with the volatility shock.

Moreover, from (2.24), observations of the risk free rate r(Xt) characterize the SDF
instantaneous rate of expected growth h(Xt). Note also that, insofar as one considers that
both the risk free rate r(Xt) and the instantaneous expected rate of return on the stock¡
r(Xt) +P St (Xt)

¢
are observed, the only characteristic of the pricing kernel that is not

fully hidden in the bond and stock prices is its state variable di®usion coe±cient a(Xt), or
equivalently, the volatility risk premium a(Xt)¾(Xt).8

8To draw on analogy with the previously described discrete time framework, note that if the SDF

lognormal conditional probability distribution were characterized through a parametric specī cation of

¹m; ¾m and ¾ms , ¾ms would have been deduced from
³
¹m + ¾2

m
2

´
through the stock pricing equation

while ¹m could be deduced from ¾2
m through the bond pricing equation. Then, in the discrete case too,

the volatility coe±cient of the SDF is the crucial channel for the additional role of preferences in option

pricing.
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It is then convenient, exactly as it has been done in discrete time, to de¯ne two variables
B¤ (t; T) and St»t;T that can respectively be interpreted as the bond price and the stock
price in the ¯ctitious world where the path XTt of state variables would be known at time
t by investors:

B¤ (t; T ) = Et
·
mT
mt

jX¿ ; t · ¿ · T
¸

= exp
·
¡

Z T

t
r (X¿) d¿

¸
exp

·Z T

t
a (X¿)dWX¿ ¡ 1

2

Z T

t
a2 (X¿)d¿

¸
(2.27)

and:
St»t;T = Et

·
mT
mt

¢ ST jX¿ ; t · ¿ · T
¸

that is:

»t;T = exp
·Z T

t
[a (X¿) + ½¾ (X¿)] dWX¿

¸
exp

·
¡1
2

Z T

t
fa(X¿) + ½¾ (X¿)g2 d¿

¸
(2.28)

By the law of iterated expectations, the expected value at time t of these ¯ctitious prices
coincide with the actual prices:

B (t; T ) = Et [B¤ (t; T )] and Et
£
»t;T

¤
= 1:

Computing the price of an European call:

¼t = Et
·
mT
mt

¢Max [0; ST ¡K]
¸

we obtain the GBS option pricing formula similar to (2.11) and (2.16):

¼t = Et
h
gBS

¡
St»t;T ; ¹¾2t;T

¢i
(2.29)

where: ¹¾2t;T = (1¡ ½2)
R T
t ¾

2 (X¿) d¿¹¾2t;T = (1 ¡ ½2)
R T
t ¾

2 (X¿) d¿ and gBS (¢; ¢) is a BS-like

option pricing formula where the standard discount factor exp
h
¡

R T
t r(X¿)d¿

i
has been

replaced by B¤(t; T) as in (2.16).
In contrast to similar option pricing formulas derived by Romano and Touzi (1997)

and Fouque, Papanicolaou and Sircar (2000), the expectation (2.29) is with respect to
the historical distribution, while the risk-neutral probability distribution they consider
corresponds to the particular case a(Xt) ´ 0. In particular, they have not addressed the
di®erence between B¤(t; T ) and exp

h
¡ R T
t r(X¿)d¿

i
.

It is also worth noticing that the distortion on the stock price through the scaling factor
»t;T is now the result of two e®ects: (1) the nonzero volatility risk premium coe±cient a(Xt)
and (2) the nonzero leverage e®ect coe±cient ½:
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Two remarks are in order in this respect. On the one hand, the discrete time framework,
although more general than the continuous time one, was unable to accommodate such
distortions through volatility risk premia in the zero-leverage case. On the other hand,
volatility risk premia that are not associated with leverage are somewhat immaterial in
terms of volatility smile shapes.

Since the option price can always be interpreted as an expectation with respect to the
risk neutral probability distribution, that is with a (Xt) = 0 (and P St (Xt) = 0), zero-
leverage will always imply that the volatility smile is U-shaped, symmetric and minimal at
the money. The general result of Renault (1997) regarding (2.12) still applies. Therefore,
in case of zero-leverage, the only way to assess the volatility risk premium is to statistically
compare the risk neutral and the historical probability distributions.

The volatility smile is still useful in this respect since we know (see Breeden and Litzen-
berger (1978)) that the conditional cumulative risk-neutral distribution function is:

Ft (St+1) = [B (t; t +1)]¡1
@¼t
@K jK=St+1

+1 (2.30)

= [B (t; t+ 1)]¡1¢t (¾imp;t)
@¾imp;t
@K jK=St+1

+ 1

where ¢t(¾) denotes the BS delta of the option for a value ¾. In particular, while in case
of zero-leverage the risk neutral distribution does not feature any excess skewness with
respect to the historical one, the risk neutral return variance and the historical one may
still di®er (see Rosenberg (2000)).

3 Modelling asset price dynamics via di®usions for the purpose of option pric-

ing

Since the seminal papers of Black and Scholes (1973) and Merton (1973), the greater part
of option pricing models have been based on parametric continuous time models for the
underlying asset. The overwhelming rejection of the constant variance geometric Brownian
motion lead to a new class of stochastic volatility models introduced by Hull and White
(1987) and reviewed in Ghysels, Harvey and Renault (1996). While the models in the SV
class are by now well-established, there are still a number of unresolved issues about their
empirical performance.

The work of Heston (1993), who proposed a SV di®usion with an analytical option
pricing formula, was generalized by Du±e and Kan (1996) and Du±e, Pan and Singleton
(2000) to a rich class of a±ne jump di®usions. This class will be reviewed in a ¯rst
subsection. Alternative models, mostly non-a±ne, will be covered in the second subsection.
A ¯nal subsection discusses option pricing without estimated prices of risk.
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3.1 The a±ne jump-di®usion class of models

The general class of a±ne jump di®usion (AJD) models examined in detail by Du±e, Pan
and Singleton (2000) (DPS hereafter) includes as special cases many option pricing models
that have been the object of much econometric analysis in the past few years. To describe
the class of processes consider the following return dynamics, where d log St = dU1t with U1t
is the ¯rst element of a vector process N-dimensional Ut which represents the continuous
path di®usion component of the return process, the second term exp¢Xt ¡ ¶ represents
discrete jumps, where Xt is a N-dimensional L¶evy process and ¶ a vector of ones. The
process Ut is governed by the following of equations:

dUt = ¹(Ut; t)dt+ ¾(Ut; t)dWt +exp¢Xt ¡ ¶ (3.1)

where the process Ut is Markovian and takes values in an open subset D of RN , ¹(y) =
£ + Ky with ¹ : D ! RN and ¾(y)¾(y)0 = h +

PN
j=1 yjH

(j) where ¾ : D ! RN£N .
Moreover, the vector £ is N£1, the matrix K is N£N whereas h and H are all symmetric
N £N matrices. The process Wt is a standard Brownian motion in RN : While the ¯rst
component of the Ut process relates to returns, the other components Uit for i = 2; : : : ; N
either govern the stochastic drift or volatility of returns.9 This setup is a general a±ne
structure that allows for jumps in returns (a®ecting the ¯rst component U1t) and the
less common situation of jumps in volatility factors (a®ecting the components Uit that
determine volatility factors). Empirical models for equity have at most N = 4; where the
U2t a®ects the drift of U1t and U3t and U4t a®ect either the volatility or jump intensity (see
Chernov, Gallant, Ghysels and Tauchen (2000, 2003) for examples). We will start with
single volatility factor models, followed by a discussion of jump di®usions and models with
multiple volatility factors.

3.1.1 Models with a single volatility factor

The class is de¯ned as the following system of stochastic di®erential equations:

0
@ dYt
dVt

1
A =

0
@ ¹

·(µ¡ Vt)

1
Adt +

p
Vt

0
@ 1 0

½¾v
p
(1¡ ½2)¾v

1
AdWt + »dNt (3.2)

where Yt is the logarithm of the asset price St; Wt = (W1t;W2t)0 is a vector of independent
standard Brownian motions, Nt = (Nyt ; Nvt )0 is a vector of Poisson processes with constant

9All further details regarding the regularity conditions pertaining to the Ut are discussed by DPS (2000)

and therefore omitted.
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arrival intensities ¸y and ¸v and » = (»y; »v)0 is a vector of jump sizes for returns and
volatility respectively10. We adopt the mnemonics used by DPS and Eraker, Johannes and
Polson (2001): SV for stochastic volatility models with no jumps in returns nor volatility
(¸y = ¸v = 0); SVJ, for stochastic volatility models with jumps in returns only (¸y > 0;
¸v = 0); SVJJ, for stochastic volatility models with jumps in returns and volatility (¸y > 0;
¸v > 0). In SVJ the jump size is distributed normally, »y » N (¹y; ¾2y): The SVJJ can
be split into the SVIJ model (with independent jump arrivals in returns and volatility and
independent jump sizes »y » N (¹y; ¾2y) and »v » exp(¹v)) and the SVCJ model (with
contemporaneous Poisson jumps arrivals in returns and volatility, Nyt = Nvt with arrival
rate ¸y and correlated sizes »v » exp(¹v) and »

yj»v » N (¹y + ½J»
v; ¾2y):

A number of recent papers have investigated the Heston (1993) SV model. Most papers
(Andersen, Benzoni and Lund (2002), Benzoni (1998), Eraker, Johannes and Polson (2001))
conclude that the stochastic volatility model provides a much better ¯t of stock returns
than standard one-factor di®usions. In particular, the strong negative correlation around
-0.4 found between the volatility shocks and the underlying stock returns shocks captures
well the negative skewness observed in stock returns. However, the model is rejected since
it is unable to accommodate the excess kurtosis observed in the stock returns11. Basically,
it cannot ¯t the large changes in stock prices occurring during crash-like events. In the SV
model, there is a strong volatility persistence (the estimated value for the mean reversion
parameter · is in the order of 0.02).

Adding jumps in returns appears therefore natural since the continuous path stochastic
volatility accommodates the clustered random changes in the returns volatility whereas the
discrete Poisson jump captures the large infrequent price movements. However, jump com-
ponents are di±cult to estimate and complicate the extraction of the volatility process12.
Eraker, Johannes and Polson (2001) propose a likelihood-based methodology using Markov
Chain Monte Carlo methods. Their estimation results for the period 1980-1999 show that
the introduction of jumps in returns in the SVJ model has an important downward im-
pact on the parameters of the volatility process. The parameters for average volatility, the

10A speci¯cation with ¯Vt in the drift of the returns equation was considered by Eraker, Johannes and

Polson (2001). This additional term was found to be insigni¯cant, in accordance with the ¯ndings of

Andersen, Benzoni and Lund (2001) and Pan (2002).
11Both Andersen, Benzoni and Lund (2001) and Benzoni (1998) estimate a non-a±ne speci¯cation with

the log variance. The model ¯ts slightly better than the a±ne SV model but it is still strongly rejected

by the data. Jones (2003) estimates a SV model with CEV volatility dynamics but it generates too many

extreme observations.
12For a discussion of the di®erent types of volatility ¯lters see Ghysels, Harvey and Renault (1996) and

the chapter of Gallant and Tauchen (2001) in this Handbook.
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volatility of volatility and the speed of mean reversion all fall dramatically. This is some-
what consistent with the results of Andersen, Benzoni and Lund (2002) when they estimate
the models from 1980 till 1996, but with less magnitude. However, in the latter study, pa-
rameters associated with volatility change much less when the models are estimated over a
longer period (1953 to 1996). The di®erence between the two latter studies is to be found
in the estimates of the jump process. In Eraker, Johannes and Polson (2001), jumps arrive
relatively infrequently, about 1.5 jumps per year and are typically large. The jump mean
is -2.6% and the volatility is just over 4%. The large sizes of jumps are in contrast with
the smaller estimates (¹y of zero and ¾y less than 2%) obtained by Andersen, Benzoni
and Lund (2002) and Chernov, Gallant, Ghysels and Tauchen (2003). The introduction of
jumps lowers the negative correlation between the innovations in returns and in volatility.
In all studies, the SVJ model appears to be less misspeci¯ed than the SV model.

All econometric complexities put aside, other issues remain. Adding jumps resolves the
mis¯t of the kurtosis on the marginal distribution of returns, but one may suspect that the
dynamic patterns of extreme events are not particularly well captured by an independent
Poisson process. The stochastic structure of a one factor SV model augmented with a
Poisson jump process implies that the day after a stock market crash another crash is
equally likely as the day before. In addition, the occurrence of jumps is independent
of volatility. Clearly, the independent Poisson process has unappealing properties and
therefore some alternative models for jumps, i.e. alternative L¶evy speci¯cations, have been
suggested. Bates (2000) estimated a class of jump-di®usions with random intensity for the
jump process, more speci¯cally where the intensity is an a±ne function of the stochastic
volatility component. Du±e, Pan and Singleton (2000) generalize this class and Chernov,
Gallant, Ghysels and Tauchen (2000), Eraker, Johannes and Polson (2001) and Pan (2002)
estimate multi-factor jump-di®usion models with a±ne stochastic jump intensity. The
models considered by DPS are:

¸(Ut) = ¸0(t) + ¸1(t)Ut (3.3)

where the process Ut is of the a±ne class as Vt speci¯ed in (3.2). These structures may not be
entirely suitable either to accommodate some stylized facts. Suppose one ties the intensity
to the volatility factor Vt in (3.2), meaning that high volatilities implies high probability of
a jump. This feature does not take into account an asymmetry one observes with extreme
events. For instance the day before the 1987 stock market crash the volatility measured by
the squared return on the S&P 500 index was roughly the same as the day after the crash.
Therefore, in this case making the intensity of a crash a linear a±ne function of volatility
would result in the probability of a crash the day after Black Monday being the same as

28



the trading day before the crash. Obviously, one could assign a factor speci¯c to the jump
intensity and governed by an a±ne di®usion. Hence, one adds a separate factor Ut that
may be correlated with the volatility factor Vt: Pan (2002) examines such processes and
provides empirical estimates. Chernov, Gallant, Ghysels and Tauchen (2000) and Eraker,
Johannes and Polson (2001) consider also a slightly more general class of processes:

¸(x; U ) = ¸0(x; t) + ¸1(x; t)Ut (3.4)

where for instance ¸i(x; t) = ¸i(t) exp(G(x)): This speci¯cation yields a class of jump L¶evy
measures which combines the features of jump intensities depending on, say volatility,
as well as the size of the previous jump. The virtue of the alternative more complex
speci¯cations is that the jump process is no longer independent of the volatility process,
and extreme events are more likely during volatile market conditions. There is, however,
an obvious drawback to the introduction of more complex L¶evy measures as they involve
a much more complex parametric structure. Take for example the case where the jump
intensity in (3.3) is a function of a separate stochastic factor Ut correlated with the volatility
process Vt: Such a speci¯cation may involve up to 6 additional parameters to determine the
jump intensity, without specifying the size distribution of jump. Chernov, Gallant, Ghysels
and Tauchen (2000) endeavor into the estimation of various complex jump processes using
more than a 100 years of daily Dow Jones data and ¯nd that it is not possible to estimate
rich parametric speci¯cations for jumps even with such long data sets.13

Despite all these reservations about jump processes, one has to note that various papers
have not only examined the econometric estimation but also the derivative security pricing
with such processes. In particular, Bakshi and Madan (2000) and Du±e, Pan and Singleton
(2000) provide very elegant general discussions of the class of a±ne jump-di®usions with
stochastic volatility which yield analytic solutions to derivative security pricing. One has
nevertheless to bear in mind the empirical issues that are involved. A good example is the
a±ne di®usion with jumps. In such a model there is a price of jump risk and a price of
risk for jump size, in addition to the continuous path volatility factor risk price and return
risk. Hence, there are many risk prices to be speci¯ed in such models. Moreover, complex
speci¯cations of the jump process with state-dependent jump intensity, result in an even
larger number of prices of risk.

13Chernov, Gallant, Ghysels and Tauchen (2000) also examine non-a±ne L¶evy processes, which will be

covered in the next subsection.
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3.1.2 Multiple volatility factors

A±ne di®usion models are characterized by drift and variance functions which are linear
functions of the factors. Instead of considering additional factors that govern jump inten-
sities one might think of adding more continuous path volatility factors. Dai and Singleton
(2000) discuss the most general speci¯cation of such models including the identi¯cation
and admissibility conditions. Let us reconsider the speci¯cation of Vt in (3.2) and add a
stochastic factor to the drift of returns, namely:

dYt = (®10 + ®12U1t)dt+
p
¯10 + ¯12U2t + ¯13U3t(dW1t + Ã12dW2t + Ã13dW3t)

dU1t = (®20 + ®22U1t)dt+ ¯20dW2t (3.5)

dUit = (®i0+ ®iiUit)dt+
p
¯i0 + ¯iiUitdWit; i = 2; 3

The volatility factors enter additively into the di®usion component speci¯cation. Hence,
they could be interpreted as short and long memory components as in Engle and Lee (1999).
The long memory (persistent) component should be responsible for the main part of the
returns distribution, while the short memory component will accommodate the extreme
observations. This speci¯cation allows feedback, in the sense that the volatilities of the
volatility factors can be high via the terms ¯iiUit when the volatility factors themselves
are high. Adding a second volatility factor helps ¯tting the kurtosis, using arguments
similar to those that explain why jumps help ¯tting the tails. The extra freedom to ¯t tails
provided by an extra volatility factor has its limitations, however, as noted by Chernov,
Gallant, Ghysels and Tauchen (2003). In fact, their best model, which does ¯t the data at
conventional levels, is not an a±ne model (see next subsection).

Bates (2000) and Pan (2002) argue that the speci¯cation of the volatility process should
include jumps, possibly correlated with the jumps in returns. This is an alternative to
expanding the number of volatility factors. It has the advantage that one can ¯t the
persistence in volatility through a regular a±ne speci¯cation of Vt and have extreme shocks
to volatility as well through the jumps, hence capturing in a single volatility process enough
rich features that simultaneously ¯t the clustering of volatility and the tails of returns. The
drawback is that one has to identify jumps in volatility, a task certainly not easier than
identifying jumps in returns.

3.2 Other continuous time processes

By other continuous time processes we mean a large class of processes that are either non-
a±ne, or a±ne but do not involve the usual jump-di®usion processes but more general L¶evy
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processes or fractional Brownian motions. Three subsections describe the various models
that have been suggested.

3.2.1 Non-A±ne Index models

Another way to capture the small and large movements in returns is to specify stochastic
volatility models with two factors as in Chernov, Gallant, Ghysels and Tauchen (2003).
They propose to replace the a±ne setup (3.5) by some general volatility index function
¾(U2t; U3t) able to disentangle the e®ects of U2t and U3t separately and therefore have a
di®erent e®ect of short and long memory volatility components. In particular they consider:

¾ (U2t; U3t) = exp (¯10 + ¯12U2t + ¯13U3t) (3.6)

dUit = (®i0+ ®iiUit)dt + (¯i0 + ¯iiUit)dWit; i = 2; 3 (3.7)

Chernov, Gallant, Ghysels and Tauchen (2003) study two di®erent °avors of the loga-
rithmic models, depending on the value of the coe±cients ¯ii: When ¯ii = 0, the volatility
factors are described by Ornstein-Uhlenbeck processes. In this case, the drift and variance
of these factors are linear functions and, hence, the model can be described as logarithmic
or log-a±ne. Whenever, ¯ii 6= 0 either for i = 2 or 3 there is feedback, a feature found
to be important in Gallant, Hsu, and Tauchen (1999), and Jones (2003). The exponential
speci¯cation in (3.6) is of course not the only index function one can consider. Meddahi
(2001) proposes another way to break the link between volatility persistence and fat tails
by specifying a °exible form (linear combination of Hermite polynomials) for the di®usion
coe±cient in the returns equation.

Chernov, Gallant, Ghysels and Tauchen (2003) show that the exponential speci¯cation
with two volatility factors (without jumps) yields a remarkably good empirical ¯t, i.e.
the model is not rejected at conventional signi¯cance levels unlike the jump di®usion and
a±ne two-factor models discussed in the previous section. Others have also found that
such processes ¯t very well, see for instance Alizadeh, Brandt and Diebold (1999), Chacko
and Viceira (1999), Gallant, Hsu and Tauchen (1999) and the two-factor GARCH model
of Engle and Lee (1999). The fact that logarithmic volatility factors are used, instead
of the a±ne speci¯cation, adds the °exibility of state-dependent volatility as noted by
Jones (2003). In addition, an appealing feature of the logarithmic speci¯cation is the
multiplicative e®ect of volatility factors on returns. One volatility factor takes care of long
memory, whereas the second factor is fast mean-reverting (but not a spike like a jump).
This property of logarithmic models facilitates mimicking the very short-lived but erratic
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extreme event behavior through the second volatility factor. Neither one volatility factor
models with jumps nor a±ne two-factor speci¯cations are well equipped to handle such
patterns typically found during ¯nancial crises.

It should also be noted that the two-factor logarithmic speci¯cation avoids several econo-
metric issues. We noted that the presence of jumps also considerably complicates the ex-
traction of the latent volatility and jump components since traditional l̄ters no longer
apply. In contrast, the continuous path two-factor logarithmic SV process does not pose
any di±culties for l̄tering via reprojection methods as shown by Chernov, Gallant, Ghysels
and Tauchen (2003). There is another appealing property to the two-factor logarithmic SV
model: the model has a smaller number of risk factors compared to many of the alterna-
tive speci¯cations, speci¯cally those involving complex jump process features. The major
drawback of this class of processes, however is the lack of an explicit option pricing formula:
simulation-based option pricing is the only approach available.

3.2.2 L¶evy processes and time deformation

It was noted before that one could easily relax normality in discrete time models through the
introduction of mixture distributions. Likewise, in the context of continuous time models
it was noted that one can replace Brownian motions by so called L¶evy processes. The
typical setup is through subordination, also referred to as time deformation, an approach
suggested ¯rst in the context of asset pricing by Clark (1973) and used subsequently in
various settings. The idea to use a L¶evy process to change time scales and thus random
changes in volatility can be interpreted as a clock ticking at the speed of information arrival
in the market. For further discussion see for example Barndor®-Nielsen and Shephard
(2001a,b, 2003), Clark (1973), Ghysels, Gouri¶eroux and Jasiak (1997), Madan and Seneta
(1990), Tauchen and Pitt (1983), among many others.

The purpose of this section is to survey the option pricing implications of assuming the
broader class of time deformed L¶evy processes. Various authors have studied option pricing
with this class of processes, including most recently Carr, Geman, Madan and Yor (2003),
Carr and Wu (2002) and Nicolato and Venardos (2003). The latter follow closely the setup
of Barndor®-Nielsen and Shephard, which we adopt here as well. We already introduced in
equation (3.1) the class of a±ne jump-di®usion processes. Nicolato and Venardos consider
a di®erent class, namely:

dYt = (¹+ ¯¾2t)dt+ ¾tdWt + ½dZ¸t (3.8)

d¾t = ¡±¾2tdt+ dZ±t (3.9)

with ± > 0 and ½ · 0. The process Z = (Z±t) is subordinator, independent of the Brownian
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motion Wt; assumed to be a L¶evy process with positive increments, called by Barndor®-
Nielsen and Shephard (2001a) the background driving L¶evy process. It is assumed that Z
has no deterministic drift and its L¶evy measure has a density ¸: Note that the solution to
(3.9) can be written as:

¾2t = exp¡±t¾20 +
Z t

0
exp t¡ sdZ±s (3.10)

The resulting dynamics of the stock price process are

dSt = St¡(btdt + ¾t + dMt)

dbt = ¹+ ±·(½) + (¯ +
1
2
)¾2t (3.11)

Mt =
X

0<s·t
(exp½¢Z±s¡ 1) ¡ ±·(½)t

where ·(x) is the cumulant transform, i.e. ·(x) = logE [exp xZ1]: To build models of time
deformation one exploits the property (see e.g. Sato (1999)) that for any self-decomposable
probability distribution L there exists a L¶evy process Z such that the a OU process driven
by Z has L as marginal. Examples of self-decomposable distributions are the inverse
Gaussian and Gamma distributions. Therefore, two popular models to specify the variance
process are the so called IG¡OU and ¡¡OU processes studied respectively by Barndor®-
Nielsen and Shephard (2001a) and Madan and Seneta (1990). Carr, Geman, Madan and
Yor (2003) study other processes as well, generalizations of Madan and Seneta and Normal
inverse Gaussian models. De facto these processes are one-factor volatility models of the
non-a±ne type, or view di®erently one has replaced Gaussian mixtures (in this case OU
type processes) by processes that have a mixture representation.

The characteristic functions for the log of price can be derived in all the aforementioned
cases and ca be used to obtain option prices via the Fast Fourier transform. Equivalent
martingale representations are obtained through measure changes within the class of OU
process driven by Z: One interesting case that we would like to highlight is obtained by
Nicolato and Venardos (2003), who express the call price of a European option as condi-
tional expectation of the Black-Scholes formula using so called e®ective log-stock prices,
namely:

¼ht = E
Q¤[BS(Yeff ; Veff)jYt; ¾2t ] (3.12)

similar to an expression of Hull and White (1987) and similar to the GBS formula discussed
earlier, except that here (as in Hull and White) the expectation is taken under the risk
neutral expectation. The e®ective log-price process Xeff is the original process Xtmodi¯ed
by the path of the future subordinator (Z±T ¡ Z±t where T is the maturity date of the
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contract and Veff is the (re-scaled) future realized volatility between t and T: Because of
the processes involved, this formula applies to a wide variety of non-a±ne di®usions with
leverage as well as jump-di®usions. To compute actual option prices, Nicolato and Venardos
(2003) suggest to simulate the pair (Yeff ; Veff ) and provide the relevant references to do
so. Carr, Geman, Madan and Yor (2003) construct option prices di®erently, following a
method developed in Carr and Madan (1998) using a generalized Fourier transforms and
parameters calibrated with cross-sections of option contracts.

3.2.3 Long-memory in Continuous Time

In section 2.5 we noted that numerous distorted smiles in the shapes of smirks or frowns are
often inferred from market data since 1987 and provide an explanation in terms of stochastic
volatility and its instantaneous correlation with the return of the underlying asset. However,
as pointed out by Sundaresan (2000) in his recent survey of the performance of continuous-
time methods for option valuation, the remaining puzzle is the so-called term structure of
volatility smiles, that is, the fact that the volatility smile e®ect appears to be dependent,
in a systematic way, on the maturity structure of options. Sundaresan (2000) ¯rst observes
that the volatility smile appears to be stronger in short term options than in longer term
ones, which is consistent with the stochastic volatility interpretation. When volatility is
stochastic, the option price appears to be an expectation of the BS price with respect to
the probability distribution of the so-called integrated volatility (1=h)

R t+h
t ¾2(u)du over

the lifetime of the option (see Renault and Touzi (1996) in the context of the Hull and
White (1987) model) or of a fraction of it in case of leverage e®ect (see Romano and Touzi
(1997) in the context of the Heston (1993) model). Then, by a simple application of the
law of large numbers to time averages of the volatility process (assumed to be stationary
and ergodic), one realizes that the e®ects of the randomness of the volatility should vanish
when the time to maturity of the option increases and therefore the volatility smile should
be erased.

Nevertheless, as Sundaresan (2000) emphasizes, the term structure of implied volatilities
still appears to have short term and long term patterns that cannot be so easily reconciled.
Introducing long memory in the stochastic volatility process appears to be useful in this
respect. To see this, it is worth revisiting the common claim that the convexity of the
volatility smile is produced by the unconditional excess kurtosis of log returns. For nota-
tional simplicity, we consider that the log price has a zero deterministic drift and that there
is no leverage e®ect, i.e. using the notations of subsection 2.7, the two Wiener processes
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W S and WX are independent and the log return over the period [t; t + h] can be written:

Rt (h) = log
St+h
St

=
Z t+h

t
¾udwW su ;

where the two stochastic processes ¾ and ws are independent Hence, given the volatility
path, the log return is normal and we can write:

E
£
R2
t (h)=¾

¤
=

Z t+h

t
¾2udu

and

E
£
R4
t (h) =¾

¤
= 3

·Z t+h

t
¾2udu

¸2

:

The unconditional kurtosis of the return over the period [t; t+ h] is therefore given by:

k (h) =
E [R4

t (h)]
(E [R2

t (h)])
2 = 3

2
41 +

V ar
h
1
h

R t+h
t ¾2udu

i

(E (¾2))2

3
5 (3.13)

Then, to address the issue of consistency between short term and long term patterns, it is
worth considering the limit cases of in¯nitely short time to maturity (h! 0) and in¯nitely
long time to maturity (h ! 1) : First, since 1

h

R t+h
t ¾2udu converges in mean-square towards

¾2t when h tends to zero:

lim
h!0
k (h) = 3

·
1 +
V ar (¾2)
(E (¾2))2

¸
(3.14)

Equation (3.14) is a specialization to very short term intervals of a well-known result since
Clark (1973): the excess kurtosis is equal to 3 times the squared coe±cient of variation
of the stochastic variance. This excess kurtosis e®ect persists in the very short term even
though the volatility smile evaporates and the conditional variance Vt

h
1
h

R t+h
t ¾2udu

i
tends

to zero. This is a counterexample to the claim that convexity of the volatility smile is
simply produced by unconditional excess kurtosis. As already previously noted, observed
violations of Black-Scholes pricing for very short-term options cannot be captured within
the one factor stochastic volatility framework without introducing a huge volatility risk
premium which would become explosive in longer term options. This explains why jumps,
multiple volatility factors or other nonlinearities have been introduced.

The focus of interest here is the remaining puzzle that stochastic volatility still appears
to be signi¯cant for very long maturity options as documented by Bollerslev and Mikkelsen
(1999). The implied level of volatility persistence to account for deep volatility smiles in
long-term options is large in the framework of standard (short memory) models of volatility
dynamics, even with a model of permanent and transitory component as in Engle and Lee
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(1999). Moreover, this cannot be easily reconciled with the stylized fact that the sample au-
tocorrelogram of squared asset returns generally decreases quite abruptly in the short term
whereas it appears to converge slowly to zero in the long term. In order to address this is-
sue, Comte and Renault (1998) proposed a continuous time stochastic volatility model with
long memory. Long memory in volatility dynamics is a well-documented empirical fact (see
e.g. Ding, Granger and Engle (1993)) which has given rise to various long-memory GARCH
models, (Baillie, Bollerslev and Mikkelsen (1996), Bollerlslev and Mikkelsen (1996), Robin-
son (1991)) and long-memory discrete time stochastic volatility models (Breidt, Crato and
De Lima (1998), Harvey (1998)).

To get a long-memory continuous time stochastic volatility model, the basic idea of
Comte and Renault (1998) was to extend the log-normal stochastic volatility model to
fractional Brownian motion. The log-volatility process follows Orstein-Uhlenbeck dynam-
ics, but with the standard Brownian motion replaced by a fractional one. Since the main
strand of the volatility literature is now more oriented towards a±ne models, we rather
present here an overview of the a±ne fractional stochastic volatility of Comte, Coutin and
Renault (2003) (CCR hereafter). The results are qualitatively similar to Comte and Re-
nault (1998) but the a±ne setting provides closed form formulas useful for interpretation
and option pricing applications as well. Starting from a CIR stochastic volatility model as
in Heston (1993), d~¾2 (t) = k

³
~µ¡ ~¾2 (t)

´
dt + °~¾ (t) dWX (t) ; CCR consider the centered

process X (t) = ~¾2 (t)¡ ~µ and a fractional integration of it:

X(d) (t) =
Z t

¡1

(t¡ s)d¡1
¡(d)

X (s) ds; 0 · d · 1: (3.15)

To facilitate the interpretation, it is worth noting that a formal integration by part on
(3.15) implies that, under some convergence conditions, one can rewrite X(d)(t) as:

X(d) (t) =
Z t

¡1

(t¡ s)d
¡ (d+ 1)

dX (s) (3.16)

It can be seen from (3.16) that X(0) (t) = X (t) and X(1) (t) corresponds to standard
integration of X (t) as in (3.15). It can be shown that for 0 · d < 1=2; the process X(d) (t)
is mean square stationary centered at zero. Then, up to positivity restrictions (see CCR
for a discussion), the volatility process is de¯ned by ¾2t = X(d) (t) + µ for some positive
parameter µ: For d = 0; ¾2t is a standard a±ne volatility process:

d¾2t = k
¡
µ¡ ¾2t

¢
dt+ °

q
¾2t +~µ ¡ µdWX (t) :

While V ar (¾2t ) = ~µ°2=2k and the autocorrelation function of ¾2t has an exponential rate
of decay: ½

£
¾2t+h; ¾2t

¤
= e¡kjhj:
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In contrast, for 0 < d < 1=2; the volatility process is still mean-reverting, yet will
feature some long range dependence. Moreover,

V ar
¡
¾2t

¢
=

~µ°2

k2d+1
¡(1 ¡ 2d) ¡ (2d)
¡ (1¡ d) ¡ (d)

(3.17)

and the autocorrelation function of ¾2t has only an hyperbolic rate of decay for large lags:
½
£
¾2t+h; ¾2t

¤
» (kh)2d¡1 =¡(2d) when h tends to in¯nity. In other words, a positive value of

d allows to introduce much more volatility persistence, not only, as usual, through a small
mean reversion parameter k, but also, even more importantly, through a rate of decay
which is hyperbolic instead of exponential.

This long memory model of volatility accomodates much better the volatility smile
puzzle for long-term options. Indeed, it can be shown that for 0 · d < 1=2 :

V art
·
1
h

Z t+h

t
¾2sds

¸
» °2~µ
k2d+1

(hk)2d¡1

(d +1) ¡(d + 1)2
(3.18)

when h tends to in¯nity. Hence, we can clearly disentangle two e®ects in the explanation of
the volatility smile: (i) the ¯rst one, independent of the maturity is simply produced by the
stochastic feature of volatility and is proportional to its unconditional variance through the
term

³
°2~µ=k2d+1

´
and (ii) the second one captures the erosion of the volatility smile when

the time to maturity increases. It is given by the term (hk)2d¡1 where, for a given long
memory parameter d; the time to maturity h is scaled by the mean reversion parameter k.

The second e®ect is important to understand the phenomenon that long-term options
still feature deep volatility smiles. For instance, a moderate level of long memory in the
volatility process, d = 1=4 say, would imply that the conditional variance (3.18)would be
divided by a factor of ten when the time to maturity h of the option contract is multiplied
by 100. In contrast, the same factor 100 would divide the variance in the short memory
case (d = 0) :

Finally, note that the kurtosis coe±cient k (h) will converge towards its Gaussian limit
3 at the some speed h2d¡1 as the conditional variance goes to zero. In other words, contrast
with the short term case, the volatility smile and the excess kurtosis vanish at the same
speed when time to maturity increases to in¯nity. Of course, long memory processes may
produce non-trivial econometric issues as the past information is very slowly forgotten.
However, a convenient feature of the a±ne fractional stochastic volatility model is that
integrated volatility

R t+h
t ¾2sds over the lifetime of the option and BS implied volatilities are

fractionally cointegrated. Moreover, the conditional probability distribution of
R t+h
t ¾2sds¡

Et
hR t+h
t ¾2sds

i
given information available at time t only depends on the current value of

the state variable X (t) : Therefore, all the long memory features relevant for option pricing
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are encapsulated in the expected integrated volatility, and can be captured by BS implied
volatilities. Note in particular that the fractional cointegration relationship justi¯es the
widely used predicting regressions of realized volatilities on BS implied volatilities. See
Bandi and Perron (2003) for an empirical illustration of fractional cointegration in this
context. Indeed, it can even be shown that there is a deterministic relationship between
expected integrated volatility and BS implied volatilities for very long-term options. Beyond
that, all the residual variations of BS implied volatilities across moneyness (volatility smile)
and across maturities (volatility term structure) are well described by the short memory
dynamics of the state variables.

3.3 Pricing options based on objective parameters

A number of papers such as Andersen, Benzoni and Lund (2002) and Eraker, Johannes
and Polson (2001) have derived the option pricing implications of jump-di®usion models
relying only on returns data for the underlying asset. This exercise aims at evaluating
the economic signi¯cance of statistical di®erences across models. Understanding how the
various factors such as stochastic volatility, jumps in returns or jumps in volatility deter-
mine the conditional distribution as a function of time to maturity and level of volatility
is equivalent to understanding how option prices change with respect to these factors. In-
deed, options with di®erent strike prices and times to maturity are a®ected by di®erent
attributes of the conditional distribution of returns. However, in order to price options
in an arbitrage-free framework, one needs to specify a candidate state price density or to
characterize the transformation from the objective measure to the risk neutral measure. In
the presence of jump and stochastic volatility risks, appropriate risk compensation must
be incorporated in the risk neutral dynamics. As already noted, there are potentially risk
premia associated with stochastic volatility, mean jump sizes, volatility of jump sizes and
jump timing. Separating the various risk premia is not an easy task. Assumptions have
to be made. The crudest assumption consists in setting at zero all risk premia associated
with stochastic volatility and jumps. Under this assumption, the change from the objective
measure to the risk neutral measure a®ects only the drift of the stock index returns which
is equal to the interest rate minus the dividend yield. Andersen, Benzoni and Lund (2001)
and Eraker, Johannes and Polson (2001) make such an assumption and study the impact
of stochastic volatility and jumps on the levels of implied volatility as well as on the shapes
of the implied volatility curves.

Jumps in returns a®ect mainly the tails of the conditional distribution and induce excess
kurtosis. As shown by Das and Sundaram (1999) among others, this e®ect is strongest for
short maturity options since the degree of excess kurtosis in a jump model decreases with
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maturity. With jump processes, the implied volatility smile °attens out very quickly. Unlike
jumps, stochastic volatility a®ects the conditional distribution the most at longer horizons.
For typical parameterizations such as a slow-moving mean reverting volatility, the term
structure of kurtosis is increasing over a reasonable horizon. Eraker, Johannes and Polson
(2001) produce a ¯gure of implied volatility curves for the models SV, SVJ, SVIJ and SVCJ
for four di®erent times to maturity (2 weeks, 2 months, 6 months and 1 year). The results
indicate that there are di®erences both in the levels of implied volatility and in the shapes of
the implied volatility curves. Regarding the volatility level, the main di®erence between the
models comes from the estimates of the spot volatility. The spot volatility estimates for the
S&P 500 are 15.10%, 14.32%,15.18% and 15.51% for SV, SVJ, SVCJ and SVIJ respectively.
This translates into a level di®erence of almost 2 percentage points in the implied volatility
for at-the-money options with one year to maturity. There are a number of noteworthy
results for the shapes of the volatility curves. First, the implied volatility curves produced
by the SV model are °at. Second, adding jumps in returns steepens the implied volatility
curves at all maturities. With a sizable negative mean jump estimate for all the models,
the implied volatility curves are downward sloping to the right and not U-shaped. Third,
the addition of jumps in volatility fattens further the tails of the conditional distributions
and makes the implied volatility curves steeper. Therefore, even without any risk premia,
jumps and especially jumps in volatility have an important impact on option prices, which
translates into term structures and cross-sections of implied volatility more consistent with
data. These results are in contrast with Andersen, Benzoni and Lund (2001) who need
to add risk premia to generate steep implied volatility curves. This is due mainly to the
fact that their estimates for the jump parameters are small compared to Eraker, Johannes
and Polson (2001). However, all studies concur in ¯nding a °attening out of the implied
volatility curves as maturity increases for all the models. Indeed, the skewness and kurtosis
of the conditional distribution at longer horizons are due mainly to the volatility process
and not to the jump processes.

To assess the actual quantitative importance of risk premia for option pricing, one needs
to estimate these risk premia along with the parameters of the model. The option market
provides us with prices which can be used, along with stock returns, to estimate these risk
premia. However, to achieve this, one needs additional assumptions to characterize the
form of these risk premia as well as an econometric model of option pricing errors.
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4 Implied risk-neutral probabilities

Let us reconsider the fundamental pricing equation and write the price at time t of a claim
paying a JT¡measurable random variable gT at time T as:

¼t[gT ] =
1
mt
E[gTmTjJT ] (4.1)

In the context of the jump-di®usion model described in the previous section, markets are
incomplete and this state-price density is not unique. For a SVJmodel, Pan (2002) proposes
a candidate state-price density of the following form:

mt = exp
µ

¡
Z t

0
r¿d¿

¶
exp

µ
¡

Z t

0
³¿dW¿ ¡ 1

2

Z t

0
³ 0¿³¿d¿

¶
exp

Ã X

i;¿i·t
»¼i

!
(4.2)

where ³ represents a vector of the market prices of risk for the price and volatility shocks
respectively and »¼i the market price of jump risk. The market prices of risk are de¯ned by:

³(1)t = ´s
p
Vt; ³(2)t = ¡ 1p

1 ¡ ½2
(½´s
´v

¾v
)
p
Vt (4.3)

This speci¯cation of the market prices of risk makes the risk premia for the di®usion price
shock and the volatility shock proportional to Vt and equal to ´sVt and ´vVt respectively.
These forms of the risk premia have been suggested by Bates (1996, 2000) based on a log
utility model for the representative investor. Jump risks are priced by the components »¼i
in the state-price density, assumed to be i.i.d. and Gaussian with mean ¹¼ and variance ¾2¼
and independent of W: The random jump sizes »¼i and »

y
i are allowed to be correlated with

a constant correlation ½¼ but are independent at di®erent jump times.
It is more common to transform the model to write it under a risk neutral measure Q¤

which is de¯ned from a density mt exp
³R t

0 r¿d¿
´
; yielding the following representation of

the SVJ model:
0
@ dSt=St

dVt

1
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0
@ rt ¡ ´sVt ¡¸¤y¹¤y
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1
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(4.4)

The risk-neutral dynamics di®er from those under the objective measure by the drift terms
which incorporate the risk premia and by replacingWt = (W1t;W2t)0 by W

¤
t = (W ¤

1t;W
¤
2t)0;

a vector of independent standard Brownian motions under Q¤ de¯ned by:

W ¤
t = Wt +

Z t

0
³sds; 0 · t · T: (4.5)

The jump process NQ¤y has the same distribution under Q¤ and Q except that »y » N
(¹¤y; ¾2y); where ¹¤y = ¹y + ¾y¾¼½¼: This means that the model allows for a jump-size
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risk. It can also allow for a jump-timing risk since the ¸¤y can be di®erent from ¸y : ¸¤y
= ¸y exp(¹¼ + ¾2¼=2): In Bates (2000) and Pan (2002), the jump-size intensity is made
volatility dependent with one and two factors in volatility respectively.

The price of a European option expiring at T with a strike price of K is given by:

¼t =
1
mt
Et[mT(ST ¡K)+]: (4.6)

A Fourier transform-based approach is adopted to calculate this expectation, as in
Heston (1993), Bates (1996, 2000), Bakshi, Cao and Chen (1997), Bakshi and Madan
(2000) and Du±e, Pan and Singleton (2000). The explicit formula is given in these papers.
For our purpose, let us characterize the solution as a function f :

¼t = Stf (Vt; #; rt; T ¡ t;K=St) (4.7)

where # = (·; ®; ¾v ; ½; ´s; ´v ; ¸y; ¸¤y; ¹y; ¾y; ¹¤y) is the vector of model parameters. We will
digress in the next subsections on the various issues raised by the estimation of such a
model.

4.1 Econometric model of option pricing errors

Typically, a theoretical asset pricing model explains an observed stationary process Yt of n
asset \prices" as a known function of the current value Xt of K latent state variables and
p unknown parameters µ :

Yt = fhi [Xt; µ]g1·i·n (4.8)

Note that when one loosely says asset \prices", one should rather understand \yields"
for bonds or \option premium by unit of spot price" for options on equity or any other
transformation well-suited to build a n-dimensional stationary time series Yt from the ob-
servation of time series of asset prices, likely to be non-stationary. In the context of options
on equity, one may also replace (see e.g. Renault and Touzi (1996), Pastorello, Renault
and Touzi (2000, 2003), Chernov and Ghysels (2000)) option prices by the corresponding
Black-Scholes implied volatilities.

With respect to the most general formulation of empirical asset pricing models presented
in Section 2, we focus here on a more speci¯c approach common in the arbitrage-free asset
pricing literature. First, the pricing kernel is not explicitly included in the list of latent
state variables. Instead, it is de¯ned as a known function of a collection Xt of relevant
risk factors such as instantaneous risk free rate, di®usion return shocks, volatility shocks
and jump events as well as a collection of risk premium parameters µ2 that de¯ne the
compensation for the various risk factors. Then, the dynamics of the latent risk factors
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Xt only identify a set µ1 of unknown \statistical" parameters while the risk premium
parameters µ2 must be added to de¯ne the complete vector µ of structural parameters of
interest for asset pricing µ = [µ01; µ

0
2]0:

For empirical option pricing on equity, the above approach is typically the one followed
by Heston (1993), Bates (2000), Chernov and Ghysels (2000), and Pan(2002) among others.
For term structure modelling, this approach is particularly well-suited to capture through
K explanatory latent factors of the yield curve the relationships between n observed yields
in a cross-section. A large strand of literature, initiated in particular by Chen and Scott
(1993), Pearson and Sun (1994) and Duan (1994), uses this indirect empirical modelling
of bond yields through underlying latent factors. In contrast, explicit dynamic modelling
of the joint stochastic process of asset returns and pricing kernel can be found in the
consumption-based equilibrium asset pricing literature (see e.g. AÄ³t-Sahalia and Lo (2000),
Jackwerth (2000), Rosenberg and Engle (2002) for applications to option pricing) or, in an
even more general way in Constantinides (1992) and Garcia, Luger and Renault (2003).

The simplest approach to estimating a K factor model is to select n = K asset prices in
the cross-section and to exploit the one-to-one relationship between prices and factors to get
either the exact likelihood (Chen and Scott (1993), Pearson and Sun (1994), Duan (1994))
or an expansion of it (AÄ³t-Sahalia and Kimmel (2002)) or implied moments (Pan(2002))
or a simulated score (Dai and Singleton(2000)). This approach neglects potentially useful
information conveyed by a number of observed related prices in the cross-section. For
instance Pan (2002) estimates a stochastic volatility model for S&P 500 index option pricing
from the joint time series of the index and one near-the-money short maturity option. One
option price is su±cient to obtain a one-to-one relationship with the volatility factor, yet
(see e.g. Dumas, Fleming and Whaley (1998)), the number of fairly liquid option prices
on S&P 500 observed at any given date may be ten or even more across maturity and
moneyness. Similarly, while common models of the yield curve involve K = 1, 2 or 3
factors, the number n of available maturities in the cross-section is typicall thirty or more.

As emphasized by Renault (1997), when the number n of observed asset prices is larger
than the number K of latent state variables, some stochastic singularity emerges and sta-
tistical estimation theory becomes irrelevant. If one takes the asset pricing model at face
value, some parameters can be computed exactly. For example, in the Black-Scholes model
without any latent state variable, observing the price of one option will be enough to com-
pute exactly the volatility of the process. In the case of stochastic volatility models, one can
recover the exact value of the current state of the variance process by matching observed
prices with the pricing formulas after elimination of unknown parameters. Di®erent option
prices imply, however, di®erent values for the current state of the variance process. This
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fundamental inconsistency can be resolved either by (1) increasing ad in¯nitum the num-
ber of state variables and match perfectly the observed paths or cross-sections of option
prices (this nonparametric approach is in the spirit of the implied binomial tree method-
ology of Rubinstein (1994) describes in section 5 below) or (2) accepting that the pricing
formulas are approximations and that the observed price is the price given by the formula
plus an error term. The presence of this error term is not di±cult to justify by simply
recognizing that any model is intrinsically misspeci¯ed whether it is in its assumptions
about the stochastic process followed by the underlying or in its simplistic description of
market structure (e.g. abstracting from microstructure e®ects and other market frictions).
Therefore, the empirical speci¯cation of the asset pricing model (4.8) will be replaced by:

Zt = (Yit)1·i·K = h[Xt; µ] = [hi(Xt; µ)]1·i·K
Vt = (Yit)K+1·i·n = e[Xt; µ] + ut = [hi(Xt; µ)]K+1·i·n + [uit]K+1·i·n: (4.9)

Note that we consider at this stage that the n assets prices have been relabelled in order
to get zero pricing errors for the K ¯rst ones while the remaining (n ¡ K) di®er from
their theoretical values by error terms uit: Hence, we do not really maintain the arbitrary
assumption that exactly K prices coincide with their theoretical values while error terms
may be added to the other ones. Equation (4.9) is interpreted as saying that, since the
structural model already involves K latent factors, there is no reason to introduce more
than (n ¡ K) error terms, while at least K independent linear combinations should be
observed without error. Note that such a speci¯cation assumes a priori which K prices
(or the K linear combinations of prices) are observed without error. This is mainly an
empirical question.

Let us ¯rst set the stage for inference on (4.9) in the context of maximum likelihood-
based inference strategies. A maintained assumption will be that the error terms uit have
a zero unconditional mean and that the ¯rst K equations provide a one-to-one relationship
between the vector Zt of the K prices observed without error and the vector Xt of structural
state variables:

Zt = (Yit)1·i·K = h[Xt; µ] , Xt = h¡1[Zt; µ] (4.10)

4.2 Maximum Likelihood based inference

In order to present a variety of likelihood-based inference strategies, we follow the presen-
tation of implied-state maximum likelihood as ¯rst proposed by Renault and Touzi (1996)
and Renault (1997). Pastorello, Patilea and Renault (2003) encompasses a larger set of
implied state methodologies under the name of implied-state back¯tting.
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The conditional likelihood associated to a data set fYt; t = 1; : : : ; Tg (and an initial
conditioning value Y0 ) must be derived, through the Jacobian formula, from the latent
conditional likelihood associated with the \latent data" set fY ¤t ; t = 1; : : : ; T g produced by
the latent realizations of a Markov process Y ¤ obtained as a one-to-one function of Y :

Yt = g[Y ¤t ; µ] , Y ¤t = g¡1[Yt; µ] (4.11)

Typically, (4.11) must be de¯ned by n equations, with (n ¡K) equations that complete
the K equations (4.10). A natural approach would be to de¯ne the state vector Y ¤t by
augmenting the vector Xt of K structural factors with the vector ut of (n¡K) error terms.
However, an alternative approach is better suited for two reasons.

First, the parameters ´ that would de¯ne the probability distribution of the error term ut
are not the focus of interest. While their consistent estimation may be useful for improving
accuracy of the parameters of interest µ; we want to ensure that even if ´ is not consistently
estimated, we obtain a consistent estimator of µ: Typically, in case of Gaussian errors,
the vector of nuisance parameters ´ consists of the unconditional covariance matrix ­ of
the (n ¡ K) error terms ut and possibly the parameters de¯ning the conditional mean
and variance dynamics. The mere fact that these error terms are added ex post and not
rationalized within a structural asset pricing model with additional state variables implies
that we have no structural information about their dynamics. Since from (4.9) we note
that the estimation of the dynamics of the error terms may contaminate the estimation of
the dynamics of the structural factors, it is important to de¯ne a procedure that focuses
only on the structural parameters µ and not on the augmented vector (µ; ´):

Second, the implied-state identi¯cation condition for µ would be problematic if we
de¯ned the latent state vector Y ¤t as Y ¤t = (Xt;ut). The empirical asset pricing model (4.9)
provides a one-to-one relationship between observed prices Yt and latent variables (Xt; ut)
but the risk premium parameters µ2 are only identi¯ed by the relationship itself and not
by the probability distribution of the latent process (Xt; ut): However, the philosophy of
the implied-state methodology is precisely to assume that the latent model (the transition
equation of the state variables) carries more information about the unknown parameters of
interest than their occurrence in the measurement equation. To materialize this, a better
strategy is to de¯ne the latent vector Y ¤t and the associated function g[Y ¤t ; µ] as:

Y ¤t = [X 0
t; V 0t ]0; Yt = [Z0t; V 0t ]0 with: Yt = g[Xt; Vt; µ] = [h0(Xt; µ); V 0t ]0: (4.12)

Note that (n¡K) among the n so-called latent variables Y ¤t are actually observed, yet this
is not a reason for not applying the general implied-state methodology. In this context, the
transition density function of the Markov process Y ¤t :

l[Y ¤t
¯̄
Y ¤t¡1] = l[Xt

¯̄
Y ¤t¡1] l[Vt

¯̄
Xt; Y ¤t¡1] (4.13)
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will be speci¯ed under the maintained assumption that error terms do not cause structural
factors, neither in the Granger sense nor instantaneously. This assumption is natural since,
if one imagines its violation, one implicitly endows the error terms with some structural
interpretation. Then, by the no-Granger causality assumption:

l[Xt
¯̄
Y ¤t¡1] = l[Xt jXt¡1] = l[Xt jXt¡1; µ1] (4.14)

where the last expression emphasis the dependence of the density on the value of the
unknown parameters only through µ1. Since we maintain the assumption that all the
structural content of the model is captured by the factors Xt, we do not really want to
specify the dynamics of the error terms and therefore carry out inference about the struc-
tural parameters through a latent quasi-likelihood, written as the likelihood of a latent
model where the error terms would be i.i.d. Gaussian with a covariance matrix speci¯ed as
a function ­(´) :

l[ut
¯̄
Y ¤t¡1; ´ ] = l[ut j´] = (2¼)¡(n¡K)=2[det­(´)]¡1=2exp[¡1

2
u0t­¡1(´)ut]: (4.15)

The above expression is well-suited only if the scale Yt used to measure asset prices is con-
sistent with conditional normality like for instance log-returns or log-implied volatilities.
Moreover, it should also be noted that the quasi-likelihood may di®er from the true like-
lihood and that we just want to plug it into (4.13) to estimate consistently the structural
parameters of interest µ (see Renault (1997) for further discussion).

Starting with the nuisance parameters estimator ´T and a corresponding estimator
­T = ­(´T ); and using (4.13) the latent criterion for extremum estimation of the structural
parameters µ is obtained as:

Q¤T (µ) =
TX

t=2

log l[Xt jXt¡1; µ1 ] ¡
1
2

TX

t=1

[Vt ¡ e(Xt; µ)]0­¡1
T [Vt ¡ e(Xt; µ)]: (4.16)

Up to recursive re¯nements, the back¯tting (or iterative implied-state) methodology amounts
de¯ning a sequence µ(p) of estimators in the following way:

² Start from an estimator µ(1) provided by a quick procedure.

² For µ(p) given, replace in (4.16) the unknown factor valuesXt byXt(µ(p)) = h¡1[Zt; µ(p)].
This de¯nes a sample based criterion QT (µ; µ(p)).

² Compute the estimator µ(p+1) as arg maxµQT (µ; µ(p)).
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Pastorello, Patilea and Renault (2003) provide further details and improvements upon
the above described procedure. To conclude, let us compare with the maximum likelihood
based competitors also well-suited for empirical asset pricing models with latent factors.

A ¯rst competitor is the Kalman ¯lter based quasi-maximum likelihood. The most pop-
ular strategy is to introduce n error terms instead of (n¡K): This was ¯rst proposed in the
context of a±ne models of the yield curve by Duan and Simonato (1999) and systemati-
cally developed by De Jong (2000). Severe nonlinearities or non-normality of the structural
model are likely to alter the validity of the Kalman l̄ter. Generally speaking, the Kalman
l̄ter should not be used for highly nonlinear models and the back¯tting l̄tering strategy

should be much better suited. However, in the context of return dynamics that are not
too far from linearity as in the case of a±ne models of the yield curve, the two approaches
may be close competitors. Typically, the back¯tting approach seeks to get more e±cient
estimators and ¯lters via the speci¯cation of an exact nonlinear relationship between prices
and factors with K zero error terms.

Another quasi-maximum likelihood approach for factor models of the yield curve has
been applied by Fisher and Gilles (1996) and Du®ee (2002). The di±cult part of the latent
log-likelihood (4.16) is the transition density function of the structural factors Xt. This
function is in general produced by a continuous time model and may be hard to compute or
simply unknown. However, consistent (albeit ine±cient) estimates can still be obtained by
substituting the true theoretical transition density with a Gaussian one, provided that the
¯rst two conditional moments ofXt are correctly speci¯ed. Besides its potential ine±ciency,
this alternative QML approach also su®ers from a potential mispeci¯cation bias due to a
nonlinear mapping g between the latent variables and the observables. In such a case,
the Jacobian formula applied to a latent Gaussian quasi-likelihood may not yield a correct
quasi-likelihood for observables. This drawback is not detrimental in the case of a±ne
(Fisher and Gilles (1996)) or essentially a±ne (Du®ee (2002)) term structure models but
would be an issue in the case of option prices on equity with stochastic volatility.

As far as e±ciency is concerned several remarks are in order. First, contrary to a
common belief, the fact that one can invert any vector of n asset prices into the n state
variables and use the implied state variables in the estimation does not mean that one
can proceed as if the state variables were directly observable. The crucial point is that
the one-to-one relationship (4.11) between the latent variables Y ¤ and the observable vari-
ables Y depends upon the unknown parameters µ: Therefore, one does not know whether
the Cramer-Rao bound (I¤)¡1 for e±cient estimation associated with the hypothetical ob-
servation of Y ¤ would be smaller or larger than the Cramer-Rao bound (I )¡1 associated
with the actual observation Y . The back¯tting strategy should not give the fallacious
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feeling that the Cramer-Rao bound associated with the maximization of the log-likelihood
TP
t=1

logL
£
Y ¤t j Y ¤t¡1; µ

¤
has been reached. This maximization is actually infeasible and the

back¯tting iterative scheme is based on the sequence:

µ(p+1) = arg max
µ

TX

t=1

logL
h
g¡1

³
Yt; µ(p)

´
j g¡1

³
Yt¡1; µ(p)

´
; µ

i

As shown in Pastorello, Patilea and Renault (2003), the cost of this necessary iteration is
the scaling of the Cramer-Rao bound (I ¤)¡1 by a matrix factor closer to an identity matrix
when the mapping µ(p) ! µ(p+1) is more strongly contracting.

If one wants to avoid such iterations and directly maximize the actual log-likelihood to
reach the Cramer-Rao bound I¡1, one should not maximize:

TX

t=1

logL
£
g¡1 (Yt; µ) j g¡1 (Yt¡1; µ) ; µ

¤
(4.17)

but rather the likelihood:
TX

t=1

logL
£
g¡1 (Yt; µ) j g¡1 (Yt¡1; µ) ; µ

¤
+
TX

t=1

log j Jg¡1 (Yt; µ) j (4.18)

where jJg¡1 (Yt; µ)j denotes the absolute value of the Jacobian of the tranformation g¡1.
This can be done in some cases but will often be involved for several reasons.

First, the function g is provided by the asset pricing model. It is in general highly
nonlinear and even not available in a closed form formula. Computing the Jacobian matrix
can then be cumbersome. Second, and more importantly, the direct maximization of (4.18)
will lead to a maximizer µ which should simultaneously meet two requirements. Namely,
it has to give a large value to the latent likelihood. Yet, on the other hand, µ will tend to
be chosen in order to select the most likely implied-state values g¡1 (Yt; µ) : In many cir-
cumstances, such a selection strategy is problematic. For instance, Pastorello, Patilea and
Renault (2003) observe that when applying the AÄ³t-Sahalia (2003) likelihood expansions for
a±ne-type di®usion processes, this will perversely push g¡1 (Yt¡1; µ) towards the frontier
of the domain where the likelihood (as provided by its expansion) is in¯nite. This is the
reason why one may prefer to perform the back¯tting strategy for likelihood maximization
rather than directly maximizing the log-likelihood (4.18).

To conclude it should be noted that Indirect Inference and E±cient Method of Moments
(EMM) are often presented as appealing alternatives to maximum likelihood, precisely when
the likelihood function becomes untractable due to some unobserved state variables. Since
the chapter by Gallant and Tauchen in this handbook is devoted to these techniques, we
just sketch here some speci¯c applications for option pricing.
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Pastorello, Renault and Touzi (2003) propose to avoid the back¯tting iteration by simply
using BS implied volatilities as proxies of implied states in a one-factor stochastic volatility
model. Thanks to the matching of estimated parameter or ¯tted-score vectors on simulated
data, the indirect inference principle (see Gouri¶eroux, Monfort and Renault (1993)) will
correct for the misspeci¯cation bias due to the use of BS implied volatilities as proxies
of actual spot volatilities which are unobserved. The main drawback of this approach is
that, while a fully parametric model is needed for the purpose of simulation, nobody knows
the e±ciency loss due to the use of an auxiliary model (here, the model on BS implied
volatilities) to simplify the likelihood.

By matching a SemiNonParametric (SNP) score generator, EMM aims at correcting for
this e±ciency loss. The EMM procedure allows estimating the model parameters under
both objective and risk-neutral probability measures if one uses implied volatilites and
the underlying asset data jointly. Time series of the underlying asset provide estimators
under the objective probability measure while risk-neutral parameters can be retrieved from
options. Chernov and Ghysels (2000) adopt the Heston model, which has a closed-form
option pricing formula, and compare univariate and multivariate models in terms of pricing
and hedging performance. An extension of the SNP/EMM methodology introduced in
Gallant and Tauchen (1998) which allows one to ¯lter spot volatilities via reprojection, i.e.
compute the expected value of the latent volatility process using a SNP density conditioned
on the observable processes such as returns and/or options data. The results in Chernov
and Ghysels (2000) show that the univariate approach only involving options by and large
dominates. A by-product of this ¯nding is that they uncover a remarkably simple volatility
extraction ¯lter based on a polynomial lag structure of implied volatilities. The bivariate
approach appears useful when the information from the cash market provides support via
the conditional kurtosis to price options. This is the case for some long-term options.
Another solution to the e±ciency problem may be provided by Markov Chain Monte Carlo
techniques as described by Johannes and Polson in this handbook.

4.3 Implied-State GMM

Using the explicitly known moment-generating function of return and volatility in an a±ne
model, Pan (2003) also advocates an implied-state methodology to focus directly on the
joint dynamics of the state variables rather than the market observables which could be
highly nonlinear functions of state variables. In this respect, the approach still belongs to
the general class of back¯tting methodologies as studied by Pastorello, Patilea and Renault
(2003) but the convenience of the GMM setting introduces some additional simpli¯cations.
The basic idea is to start from conditional moment restrictions which would provide a
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feasible GMM if the latent variable Y ¤ would be observed:

E
£
ª (Y ¤t ; µ) j Y ¤t¡1

¤
= 0 (4.19)

Following Hansen (1985) , Pan (2003) uses the optimal instrument matrix provided by:

Mt¡1 (µ) = E
·
@ª0

@µ
(Y ¤t ; µ) j Y ¤t¡1

¸ ¡
V ar

£
ª (Y ¤t ; µ) j Y ¤t¡1

¤¢¡1 :

Then, one would like to work with the just identi¯ed unconditional moment restrictions:

E [Mt¡1 (µ)ª (Y ¤t ; µ)] = 0

and to look for the estimator µ̂T solution of:

1
T

TX

t=1

Mt¡1
³
µ̂T

´
ª

³
Y ¤t ; µ̂T

´
= 0 (4.20)

this estimator is unfeasible since Y ¤t is not observed. Two strategies can be considered. The
implied-state back¯tting of Pastorello, Patilea and Renault (2003) amounts to replacing
every occurence of Y ¤ in Mt¡1 (µ) and ª (Y ¤t ; µ) by g¡1

³
Yt; µ(p)

´
where µ(p) comes from a

previous step estimation. Insofar as such iterations converge, they will converge towards the
second strategy: Pan's (2003) IS-GMM estimator. The latter consists of directly solving
(4.20) when Y ¤t is replaced by g¡1 (Yt; µ) : Then, the unknown µ appears not only in the
occurences of µ inMt¡1 (µ) and ª(Y ¤t ; µ) but also inside any occurence of Y ¤t = g¡1 (Yt; µ) :

In contrast, Pastorello, Patilea and Renault (2003) de¯ne a number p (T) of iterations
(as a function of the number T of observations) such that the back¯tting estimator µp(T )+1

is asymptotically equivalent to the Pan (2003) IS-GMM estimator. The choice between the
two strategies is just a matter of computational convenience, depending on whether one
considers that the back¯tting iterations simplify or not the solution of the IS-GMM ¯xed
point problem.

Moreover, as noted by Pan (2003) in her discussion of Pastorello, Patilea and Renault
(2003), there is a case where IS-GMM may work while IS-back¯tting does not work. This is
the case where µ would not be fully identi¯ed from state variables dynamics Y ¤, for instance
due to some risk premium parameters which do not appear in the factor dynamics. Even
in such a case, one may hope that IS-GMM still identi¯es µ. It is however worth reminding
that, when as in subsection 4.2 there are more observed prices than latent state variables,
some error terms are added and the vector Y ¤ includes some observed asset prices which
do identify the risk premium parameters. Then, implied-state back¯tting works.

As in the implied-state likelihood methodology of subsection 4.2, e±ciency is not guar-
anteed by this kind of implied-state approaches. In the context of (4.19), semiparametric
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e±ciency would involve the computation of optimal instruments for the conditional moment
restrictions:

E
£
ª

¡
g¡1 (Yt; µ) ; µ

¢
j Yt¡1

¤
= 0 (4.21)

Then, the Jacobian matrix of the moment conditions needed for computing optimal in-
struments involves di®erenciation with respect to the two occurences of µ in (4.21) and
not only the second one - as acknowledged by Pan (2003), we sacri¯ce e±ciency and gain
analytical tractability by ignoring the dependence of Y ¤t on µ: As already mentioned in
the likelihood case, it may indeed be challenging to look simultaneously for the \optimal"
value of the implied states and for the best ¯t in the latent model. However, while back-
¯tting was really needed in the likelihood case because, otherwise, forgetting the Jacobian
term may imply inconsistency of the estimator, there is no such consistency problem with
GMM. The only consequence of not taking into account the complete Jacobian term is
that the e±ciency of the optimal instrument scheme may be \limited", as acknowledged
by Pan (2003). Indeed, since the two estimators IS-GMM and IS-back¯tting are asymptot-
ically equivalent, this limit to e±ciency is tightly related to the contracting feature of the
back¯tting correspondence. The more contracting it is, the smaller is the e±ciency loss.

Garcia, Lewis and Renault (2001) propose an estimation procedure which uses both
option prices and high-frequency spot price feeds to estimate jointly the objective and
risk-neutral parameters of stochastic volatility models. This procedure is based on series
expansions of option prices and implied volatilities and on a method-of-moment estima-
tion that uses analytical expressions for the moments of the integrated volatility. In a
stochastic volatility model, with or without correlation, the option pricing formula involves
the computation of a conditional expectation of a highly nonlinear integral function of the
volatility process. To simplify this computation, the authors propose to use an expansion
of the option pricing formula in the neighborhood of ¾V = 0, as in Lewis[30], which corre-
sponds to the Black-Scholes deterministic volatility case. The coe±cients of this expansion
are well-de¯ned functions of the conditional moments of the joint distribution of the un-
derlying asset returns and integrated volatilities, which are also derived analytically. These
analytical expansions allow to compute very quickly implied volatilities which are functions
of the parameters of the processes and of the risk premia. A two-step GMM approach using
intraday returns for computing approximate integrated volatilities (the objective part of
the estimation) and option prices for computing implied volatilities (the risk-neutral part of
the estimation) allow to recover the volatility risk premia ¸: The main attractive feature of
this method is its simplicity once analytical expressions for the various conditional moments
of interest are available. The great advantage of the a±ne di®usion model is precisely to
allow an analytical treatment of the conditional moments of interest. Eraker (2001) applies
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a Markov chain Monte Carlo based approach to joint time-series data on spot and options
also for a jump-di®usion model.

5 Nonparametric approaches

The ¯nancial theoretical models of the previous sections are based on parametric dynamic
processes for stock returns. Despite the great deal of complexity put into these processes
to capture the features of the data, they remain usually misspeci¯ed. Therefore, nonpara-
metric methods, which are so called model-free and make minimal assumptions about the
underlying asset price process, appear as a promising tool to apply in the context of deriva-
tive pricing. Moreover, these methods are well adapted to the ¯nancial problems at hand
since the quantities of interest are functions, whether it is the risk neutral distribution or
state price density (SPD), the distribution function for hedging or else the value-at-risk
quantile function of the conditional distribution of returns.

Nonparametric methods have been applied to all the above-mentioned ¯nancial prob-
lems of interest. We will discuss in this section how nonparametric methods can be used to
recover a pricing function, a hedging ratio and a risk-neutral distribution. As a way to make
the transition between the parametric and nonparametric approaches, we will ¯rst consider
a semiparametric approach proposed by AÄ³t-Sahalia and Lo (1998) and Gouri¶eroux, Mon-
fort and Tenreiro (1994). The main idea is to recover risk-neutral distribution using a
nonparametric deterministic volatility function while maintaining that the derivative pric-
ing function is given by the parametric Black-Scholes formula. Next, we will see a maximum
entropy approach proposed by Buchen and Kelly (1996) and Stutzer (1996) to recover a
risk-neutral distribution from a set of option and stock prices, as well as the implied bi-
nomial tree method of Derman and Kani (1994) or Rubinstein (1994). Third, we will
survey the purely nonparametric approaches such as kerned-based techniques or learning
networks used to estimate an option pricing function and recover the other quantities of
interest with option price data. We will underline several potential problems associated
with these purely nonparametric approaches such as negative risk neutral probabilities and
argue following Garcia and Gen»cay (2000) and AÄ³t-Sahalia and Duarte (2003) that impos-
ing weak constraints on the shape and properties of the pricing function can improve the
performance of the statistical model in several dimensions. Last, we will describe how to
recover preferences from the estimates of the state price density as recently proposed by
Jackwerth (2000), AÄ³t-Sahalia and Lo (2000) and Rosenberg and Engle (2002).

Most empirical studies of option pricing focus on European contracts. In contrast,
American options, while actively traded and very liquid in some cases (such as for example
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the S&P 100 based contracts) have been avoided in order to circumvent early exercise pre-
mia and boundaries. It is worth noting that nonparametric methods are particularly suited
to handle American-type options. Broadie, Detemple, Ghysels and Torrµes (2000a,b) use
nonparametric techniques to estimate pricing functions as well as early exercise boundaries
for American options.

5.1 Semiparametric approaches to derivative pricing

One of the reasons why option price data do not conform to the Black-Scholes model
is that volatility is not constant. One can still maintain the assumption of a one-factor
di®usion process but make the di®usion coe±cient a deterministic function of the available
information such as the exercise price, the underlying price and the time to maturity. While
Shimko (1993) proposed a polynomial function of these variables for the volatility, AÄ³t-
Sahalia and Lo (1998) modeled the volatility function using kernel methods. The strategy is
to construct a nonparametric estimator of the expectation of volatility given the information
available on the underlying stock price St (or the futures price Ft;¿i = Ste(rt;¿¡±t;¿)¿ ; with
r and ± the interest rate and the dividend rate), the exercise price Xi and the time to
maturity ¿ i associated with n traded options:

b¾(Ft;¿ ; X; ¿ ) =
Pn
i=1 kF

³
Ft;¿¡Ft;¿ i
hF

´
kX

³
X¡Xi
hX

´
k¿

³
¿¡¿i
h¿

´
¾i

Pn
i=1 kF

³
Ft;¿¡Ft;¿ i
hF

´
kX

³
X¡Xi
hX

´
k¿

³
¿¡¿i
h¿

´ (5.1)

where the multivariate kernel is formed as a product of three univariate kernels kF ; kX and
k¿ , each with their own bandwidth value, with respect to the three variables of interest,
and where ¾i is the Black-Scholes volatility implied by the observed price of option i: A
call pricing function can then be estimated as:

b¼(St; X; ¿ ; rt;¿ ; ±t;¿) = ¼BS(Ft;¿ ; X; ¿ ; rt;¿ ;b¾(Ft;¿ ; X; ¿)) (5.2)

From this function, one can also obtain estimators for the option's delta and the state price
density by taking the appropriate partial derivatives:

b¢t =
@b¼(St; X; ¿; rt;¿ ; ±t;¿)

@St
(5.3)

bf¤t (ST ) = ert;¿ ¿
·
@2b¼(St; X; ¿; rt;¿ ; ±t;¿)

@X2

¸

jX=ST
(5.4)

The fact that the SPD can be recovered from option prices is a result of Banz and
Miller (1978) and Breeden and Litzenberger (1978). They show that the SPD is the second
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derivative, normalized to have an integral of one, of a call option-pricing formula with
respect to the strike price. Of course, in nonparametric methods, higher order derivatives
are estimated at a slower rate of convergence. This is known as the curse of di®erentiation.
However, in a simulation framework based on a Black-Scholes model, AÄ³t-Sahalia and
Lo (1998) show that the estimation errors for all nonparametric quantities (option price,
option delta and SPD) remain within 1 percent of their theoretical counterparts. AÄ³t-
Sahalia and Lo (1998) apply their method to the estimation of these quantities for S&P 500
European option price data. Their sample period is January 4, 1993 to December 31, 1993.
Their nonparametric estimator of volatility b¾(Ft;¿ ; X; ¿ ) generates a strongly asymmetric
volatility smile with respect to moneyness, con¯rming several sources of evidence according
to which out-of-money put prices have been consistently bid up since the crash of 1987.
The shape of the smile changes as time to maturity increases. The one-month smile is
the steepest: volatility curves are °atter for longer times to maturity. Strong skewness
and kurtosis e®ects are present in the semiparametrically estimated SPDs. The (negative)
skewness in returns diminishes as the maturity increases, while the contrary is obtained for
the positive kurtosis.

An important aspect of this methodology is the unconditional nature of the estimated
quantities. This approach assumes that these quantities are ¯xed functions of a vector of
state variables over the estimation period and has to be contrasted with methods such as
the implied binomial tree which rely on current cross-sections of option prices to infer the
SPD.

5.2 Canonical valuation and implied binomial trees

The semiparametric approach we just described still depends on the assumptions that
there is just one state variable and that it is governed by an Itô process. But, as we have
extensively documented in the previous sections, there is evidence of jumps and stochastic
volatility in the underlying stock index process. Therefore, we need procedures which
extract the asset probability distribution directly from observed prices either on the asset
itself or on options written on the asset. We will describe ¯rst a procedure based on the
maximum entropy principle which has been proposed by Buchen and Kelly (1996) and by
Stutzer (1996) and contrast it with the binomial tree approach of Rubinstein (1994). Both
the former procedure, called canonical valuation by Stutzer (1996), and the latter assume
that a set of ¯nancial instruments are priced correctly and can be used to recover the asset
distribution from an expectation pricing model. As we will see, the di®erences between the
two approaches lie in the choice of objective function.
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5.2.1 Canonical valuation

We want to estimate the payo® distribution of the underlying asset at expiration of the
option from a set of available asset and option prices. To illustrate the method, we will
take the simplest case of one underlying asset that does not pay dividends, which will be
used to price derivative securities expiring T periods from now. Following Stutzer (1996),
we start by using only returns on the underlying asset, then we will add price information
coming from options. The method involves three steps. First, starting with the current
price S and a historical time series S(t); t = ¡1;¡2; :::;¡H; one can construct a rolling
historical time series of T¡ period gross returns:

R(¡h) = S(¡h)
S(¡h ¡ T) ; h¡ 1; 2; :::; H ¡ T: (5.5)

Then, the asset's price T-periods from now is:

Sh = SR(¡h); h = 1; 2; :::; H ¡T: (5.6)

In other words, the past realized returns are used to construct possible prices at T for
the underlying asset, each with estimated objective (actual) probability bp(h) = 1

H¡T : The
problem is to ¯nd the risk neutral probabilities p¤ which are the closest to the empirical
probabilities bp in the Kullback-Leibler Information Criterion (KLIC) distance:

bp¤ = arg min
p¤(h)>0

P
h p

¤(h)=1
I(p¤; bp) =

H¡TX

h=1

bp(h) log p
¤(h)
bp(h) (5.7)

and which obey the non-arbitrage economic constraint (assuming a constant interest rate):

H¡TX

h=1

R(¡h)
rT

p¤(h)
bp(h) bp(h) = 1 (5.8)

The solution to this problem is:

bp¤(h) =
exp

h
°¤R(¡h)rT

i

P
h exp

h
°¤R(¡h)rT

i ; h = 1; 2; :::; H ¡ T (5.9)

where °¤ is found as the arg min of
P
h exp

h
°

³
R(¡h)
rT ¡ 1

´i
: The last step is of course to

use the p¤(h) to value say a call option with exercise price X expiring at T by:

C =
X

h

max[SR(¡h) ¡X; 0]
rT

bp¤(h) (5.10)
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The methodology is easily extendable to compute risk-neutral probabilities based on
more than one underlying asset. One can also ensure that a subset of derivative securities
is correctly priced at a particular date. For example, if we wanted to ensure the correct
pricing of a particular call option expiring at date T with exercise price X and market price
C; we would need to ¯nd a vector °¤ of two elements (°¤1; °¤2) such that:

[°¤1; °¤2] = arg min
°

X

h

exp
·
°1

µ
R(¡h)
rT

¡ 1
¶
+ °2

µ
max[SR(¡h) ¡X; 0]

rT
¡ C

¶¸
(5.11)

These values would then be used to compute the estimated risk-neutral probabilities as:

bp¤(h) =
exp

h
°¤1

³
R(¡h)
rT

´
+ °¤2

³
max[SR(¡h)¡X;0]

rT

´i

P
h exp

h
°¤1

³
R(¡h)
rT

´
+ °¤2

³
max[SR(¡h)¡X;0]

rT

´i ;h = 1; 2; :::; H ¡ T: (5.12)

Stutzer (1996) uses this methodology to evaluate the impact of the 1987 crash on the
risk-neutral probabilities ¯rst using only S&P 500 returns. As many other papers, he ¯nds
that the left-hand tail of the canonical distribution estimated with data including the crash
extends further than the tail of the distribution without crash data. A useful diagnostic
test is the skewness premium proposed by Bates (1991). It is the percentage di®erence of
the price of a call that is x percent (> 0) out-of-the-money (relative to the current forward
index value for delivery at the option's expiration) to the price of a put that is also x
percent out-of-the-money. The canonical valuation passes this diagnostic test for options
in the three to six month range for x > 0:02 using only the historical data on S&P 500
returns starting in 1987.

5.2.2 Implied binomial trees

The implied binomial tree methodology proposed by Rubinstein (1994) aims also at re-
covering the risk-neutral probabilities that will come closest to pricing correctly a set of
derivative securities at a given date. The idea is to start with a prior guess for the risk-
neutral probabilities say ep¤j and ¯nd the risk-neutral probabilities p¤j associated with the
binomial terminal stock price ST that are the closest to ep¤j but price correctly an existing
set of options and the underlying stock. The risk-neutral probabilities p¤j are solutions to
the following program:

min
p¤j

X

j

(p¤j ¡ ep¤j )2 subject to (5.13)
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X

j

p¤j = 1 and p¤j ¸ 0 for j = 0; :::; n

Sb · S · Sa where S = (
X

j

p¤jSj)=r¿

Cbi · Ci · Cai where Ci = (
X

j

p¤j max[0; Sj ¡Ki])=r¿ for i = 1; :::;m

where j indexes the ending binomial nodes from lowest to highest, Sj is the underlying
asset prices (supposing no dividends) at the end of a standard binomial tree, Sb and Sa

are the current observed bid and ask underlying asset price and Cai and C bi the current
observed bid and ask call option prices with striking price Ki; r is the observed annualized
riskless return and ¿ is the time to expiration.

The two methods are therefore very similar, the main di®erence being the distance cri-
terion used. While the maximum entropy criterion appears the best one from a theoretical
point of view, since it selects the posterior that has the highest probability of being correct
given the prior, there does not seem to be a statistical criterion behind the quadratic dis-
tance. A goodness of ¯t criterion given by minp¤j

P
j(p

¤
j¡ep¤j)2=ep¤j seems more natural and is

closer to the criterion used by Hansen and Jagannathan (1997) (see subsection 5.2.3). The
goodness of ¯t criterion places greater weight on states with lower probabilities. Another
criterion used is to maximize smoothness

P
j(p

¤
j¡1 ¡ 2p¤j + p¤j+1)2; as in Jackwerth and Ru-

binstein (1996) in order to avoid the over¯tting associated with exactly pricing the options.
With the smoothness criterion, there is a trade-o® between smoothing the risk-neutral dis-
tribution and explaining the option prices. All these approaches will produce risk-neutral
distributions that have much more weight in the lower left tail than the lognormal case
after the 1987 crash, but they will distribute the probability di®erently in the tail.

5.2.3 Misspeci¯cation in implied binomial trees and stochastic discount factor

models

In this section we argue that to ¯t the pricing kernel, a more relevant measure of closeness
is a distance between pricing kernels and not between risk neutral probabilities, which are
only a tool for representing these pricing kernels. In other words, one might want to look
for the SDF m¤

t+1 de¯ned by:

m¤i;t+1 = B(t; t+ 1)(p
¤
it
pit

); i = 0; 1; :::; I + 1

which is closest to a prior SDF:
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~m¤
i;t+1 = B(t; t+1)(

p¤it
pit

)

For instance, according to Hansen and Jagannathan (1997), one can choose the L2-
distance between SDFs:

Et[m¤
t+1 ¡ ~m¤

t+1]2 = B2(t; t+1)§I+1
i=0

1
pit

(p¤it ¡ p¤it)2: (5.14)

Therefore, the Hansen and Jagannathan (1997) measure of closeness (5.14) between
SDFs and the goodness of ¯t criterion between probabilities

PI+1
i=0 (1=p

¤
it) (p¤it ¡ p¤it)2 will

lead to similar conclusions if and only if the prior risk neutral probabilities p¤it are close to
the objective probability distribution pit. However, risk neutral probabilities may include
agents anticipations about rare risks which are not apparent in a historical estimation of
objective probabilities. This is the well-documented peso problem which has been discussed
in the context of option pricing by Eraker (2001).

This discussion makes clear the potential drawback of the Euclidian distance (5.13)
between probabilities. It does not put a su±cient weight on extreme events with small
probabilities. This may lead to severe pricing errors since these small probabilities appear
at the denominator of SDFs and therefore, have a large weight in the e®ective computation
of derivative asset prices.

All the methodologies we have described in this section are geared toward extracting
conditional risk-neutral distributions in the sense that they ¯t cross-sections of option prices
and in that sense have to be opposed to the unconditional approach of the previous section.
In the next section we summarize the advantages and disadvantages of both methods.

5.3 Comparing the unconditional and conditional methodologies for extract-

ing risk-neutral distributions

Since the canonical valuation or the implied tree methodologies aim at obtaining risk neutral
probabilities that come closest to pricing correctly the existing options at a single point in
time, the risk-neutral distribution will change over time. On the contrary, a nonparametric
kernel estimator aims at estimating the risk-neutral distribution as a ¯xed function of
variables such as the current stock price, the exercise price, the riskless rate and other
variables of interest. The functional form of the estimated risk-neutral distribution should
be relatively stable over time. Since we cannot really say that one approach is better than
the other, we can only sketch the advantages and disadvantages of both methods following
AÄ³t-Sahalia and Lo (1998).
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We will compare the implied binomial tree method of Rubinstein (1994) to the semi-
parametric estimate of the risk-neutral distribution of AÄ³t-Sahalia and Lo (1998). The ¯rst
method produces a distribution that is completely consistent will all option prices at each
date, but it not necessarily consistent across time. The second may ¯t poorly for a cross-
section of option prices at some date but is consistent across time. However, being a ¯xed
function of the relevant variables, the variation in the probabilities has to be captured by
the variation in these variables. Another consideration is the intertemporal dependency in
the risk-neutral distributions. The ¯rst method ignores it totally while the second exploits
the dependencies in the data around a given date. Implied binomial trees are less data-
intensive while the kernel method requires many cross-sections. Finally, smoothness has to
be imposed for the ¯rst method, whereas the second method delivers a smooth function by
construction. The stability of the risk-neutral distribution obtained with the kernel-based
estimate should lower the out-of-sample forecasting errors at the expense of deteriorating
the in-sample ¯t. AÄ³t-Sahalia and Lo (1998) compare the out-of-sample forecasting per-
formance of their semiparametric method to the implied tree method of Jackwerth and
Rubinstein (1996) and conclude that, at short horizons (up to 5 days) the implied tree
forecasting errors are lower, but that at horizons of 10 days and longer, the kernel method
performance is better.

Recently, AÄ³t-Sahalia and Duarte (2003) proposed a nonparametric method to estimate
the risk-neutral density from a cross-section of option prices. This might appear surprising
given that we know that nonparametric methods require a large quantity of data. Their
nonparametric method is based on locally polynomial estimators that impose shape re-
strictions on the option pricing function. From the absence of arbitrage, we know that the
price of a call option must be a decreasing and convex function of the strike price. The
method consists therefore in two steps, ¯rst a constrained least square regression to impose
monotonicity and convexity, followed by a locally polynomial kernel smoothing that pre-
serves the constraints imposed in the ¯rst step. In a Monte Carlo analysis, AÄ³t-Sahalia and
Duarte (2003) show these constrained nonparametric estimates are feasible in the small
samples encountered in a typical daily cross-section of option prices. In an application
to S&P 500 call option data with about two months to maturity on a day in 1999, they
compare several estimators for the price function, the ¯rst derivative with respect to the
strike price and the state price density. The comparison emphasizes that the price function
is well estimated near the money but that for high values of the strike, the locally quadratic
and cubic estimators are highly variable, while the unconstrained Nadaraya-Watson esti-
mator violates the convexity constraint on prices for low values of the strike. These poor
properties show even more in the ¯rst and the second derivatives. For the ¯rst derivative,
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all estimators except the constrained and unconstrained locally linear locally linear violate
the ¯rst derivative constraint, while for the state price density (the second derivative) all
the unconstrained estimators violate the positivity constraint in the left tail of the density
or are too °at at the globally optimal bandwidth. This nonparametric approach with shape
restrictions appears therefore promising but more evidence and comparisons are needed.
In the next section we will revisit these constrained and unconstrained approaches in the
seminonparametric context of sieve estimators, especially neural networks.

5.4 Seminonparametric estimators

In the seminonparametric approach, the nonlinear relationship f between the price of an
option ¼ and the various variables that a®ect its price, say Z, is approximated by a set of
basis functions g :

f(Z; :) =
1X

n=1

®ngn(Z; :) (5.15)

The term seminonparametric is explained by the fact that the basis functions are para-
metric, yet the parameters are not the object of interest since we need an in¯nity of them
to estimate the function in the usual nonparametric sense. The methods vary according
to the basis functions chosen. Hutchinson, Lo and Poggio (1994) propose various types
of learning networks, Gouri¶eroux and Monfort (2001) consider approximations of the pric-
ing kernel through splines, while Abadir and Rockinger (1998) investigates hypergeometric
functions. In what follows, we will develop the neural network approach and see how one
can choose the basis to obtain a valid state price density function. The basis chosen for
neural networks will be:

gn(Z; ®n) =
1

1 + exp(¡®nZ)
(5.16)

which is a very °exible sigmoid function. Then the function can be written as:

f (Z; µ) = ¯0 +
dX

i=1

¯i
1

1 + exp(°i;0 ¡ °i;1Z)
(5.17)

where the vector of parameters µ = (¯; °) and the number d of units remains to be deter-
mined as the bandwidth in kernel methods. In neural network terminology, this is called
a single hidden-layer feedforward network. Many authors have investigated the universal
approximation properties of neural networks (see in particular Gallant and White (1988,
1992)). Using a wide variety of proof strategies, all have demonstrated that under general

59



regularity conditions, a su±ciently complex single hidden-layer feedforward network can
approximate a large class of functions and their derivatives to any desired degree of ac-
curacy where the complexity of a single hidden layer feedforward network is measured by
the number of hidden units in the hidden layer. One of the requirements for this universal
approximation property is that the activation function has to be a sigmoidal such as the
logistic function presented above.

One nice property of this basis function is that the derivatives can be expressed in closed
form. If we denote h(Z) = 1

1+eZ ; then:

h0(Z) = h(Z):(1 ¡ h(Z))
h00(Z) = h(Z):(1 ¡ h(Z)):(1¡ 2h(Z))

Therefore, once the parameters of the pricing function are estimated for a given number of
units, we can compute the hedge ratio or the risk-neutral distribution. Hutchinson, Lo and
Poggio (1994) show using simulations that such an approach can learn the Black-Scholes
formula. To reduce the number of inputs, Hutchinson, Lo and Poggio (1994) divide the
function and its arguments by X and write the pricing function as a function of moneyness
(S=X) and time-to-maturity (¿) :

¼t
X

= f (
St
X
; 1; ¿): (5.18)

While they kept the number of units ¯xed, it is usually necessary as with any non-
parametric method to choose it in some optimal way. The familiar trade-o® is at play.
Increasing the number of units d given a sample of data will lead to over¯t the function in
sample and cause a loss of predictive power out of sample. A way to choose the number
of units is to use a cross-validation type of method on a validation period as proposed in
Garcia and Gen»cay (2000). Although it is not mentioned in Hutchinson, Lo and Poggio
(1994), even if we estimate well the pricing function, large errors are committed for the
derivatives of the function and most notably, negative probabilities are obtained. This is
consistent with what AÄ³t-Sahalia and Duarte (2003) have found with local polynomial esti-
mators based on a small sample of data, except that these bad properties are also present
in large samples used for estimating the function over along time period.

A partial and imperfect way to better estimate the hedge ratio and the risk-neutral
distribution is to use a network that will capture the homogeneity of the pricing function
as in Garcia and Gencay (2000). The form in (5.18) assumes the homogeneity of degree one
in the asset price and the strike price of the pricing function f: Another technical reason
for dividing by the strike price is that the process St is nonstationary while the variable
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St=X is stationary as strike prices bracket the underlying asset price process. This point is
emphasized in Ghysels, Renault and Patilea (1997). From a theoretical point of view, the
homogeneity property is obtained under unconditional or conditional independence of the
distribution of returns from the level of the asset price (see Merton (1973) or Garcia and
Renault (1998b)). Garcia and Gencay (2000) estimate a network of the form:

Ct
X

= ¯0 +
dX

i=1

¯1ih(°1i;0 + °1i;1
St
X

+ °1i;2¿) (5.19)

¡e¡®¿
dX

i=1

¯2ih(°
2
i;0 + °

2
i;1
St
X

+ °2i;2¿) (5.20)

with h(Z) =
¡
1 + eZ

¢¡1 : This has a similar structure than the Black-Scholes formula (which
is itself homogeneous), except that the distribution function of the normal is replaced by
neural network functions. Garcia and Gencay (2000) show that this structure improves the
pricing performance compared to an unconstrained network, but that it does not improve
the hedging performance. In fact, this network su®ers (albeit slightly less) from the same
de¯ciencies in terms of derivatives. To impose monotonicity and convexity on the function
and ensuring that the resulting risk-neutral distribution is a proper density function as in
AÄ³t-Sahalia and Duarte (2003), we need to choose an appropriate structure for the network.
The following basis function proposed in Dugas, Bengio, B¶elisle, Nadeau and Garcia (2001):

»(Z) = log(1 + eZ) (5.21)

is always positive and has its minimum at zero. Its ¯rst derivative:

» 0(Z) =
eZ

1 + eZ
= h(Z) (5.22)

is always positive and between 0 and 1 and therefore quali¯es for a distribution function.
Finally, its second derivative:

» 00(Z) = h0(Z) = h(Z):(1¡ h(Z)) (5.23)

is always positive, becomes 0 when h ! 0 (Z ! ¡1) or when h ! 1 (Z ! +1) and has
its maximum at h = 1=2 (Z = 0): These properties qualify for a density function.

Abadir and Rockinger (1998) with hypergeometric functions, Gottschling, Haefke and
White (2000) with neural networks and Gouri¶eroux and Monfort (2001) with splines on
the log-pricing kernel are three other ways to make sure that the estimated option pricing
function always lead to a valid density, that is nonnegative everywhere and integrating to

61



one. HÄardle and Yatchew (2001) also use nonparametric least squares to impose a variety
of constraints on the option pricing function and its derivatives. Their estimator uses
least squares over sets of functions bounded in Sobolev norm which o®ers a simple way of
imposing smoothness on derivatives.

There is a need for a comparison of these methods which impose constraints on the
estimation. Bondarenko (2003) proposes a new nonparametric method called positive con-
volution approximation which chooses among a rich set of admissible (smooth and well-
behaved) densities the one that provides the best ¯t to the option prices. He conducts
a Monte Carlo experiment to compare this method to seven other methods, parametric
and nonparametric, which recover risk neutral densities. Daglish (2003) also provides a
comparison between parametric and nonparametric methods for American options.

5.4.1 An economic application of nonparametric methods: extraction of pref-

erences

Since, in a continuum of states, the state price density or risk neutral density corresponds
to the Arrow-Debreu prices, it contains valuable information about the preferences of the
representative investor. Indeed, the ratio of the state price density to the conditional
objective probability density is proportional to the marginal rate of substitution of the
representative investor, implying that preferences can be recovered given estimates of the
state price density and the conditional objective distribution. A measure of relative risk
aversion is given by:

½t(ST ) = ST

Ã
f 0t(ST )
ft(ST)

¡ f
¤0
t (ST)
f¤t (ST)

!
(5.24)

where ft(ST) and f¤t (ST ) denote respectively the conditional objective probability density
and the state price density. This measure assumes that ST ; the value of the index at the
maturity of the option, approximates aggregate consumption, the payo® on the market
portfolio. Recently, AÄ³t-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and En-
gle (2002) followed this route to extract preferences based on semiparametric approaches.
While AÄ³t-Sahalia and Lo (2000) and Jackwerth (2000) estimate an average risk aversion
function by using a nonparametric estimate of the objective density, Rosenberg and Engle
(2002) compute a conditional risk aversion function with an asymmetric GARCH estimate
of the conditional objective probability.The estimates obtained by Jackwerth (2000) re-
veal an oddly shaped risk aversion since marginal utility increases with wealth. In their
parametric framework, Rosenberg and Engle (2002) ¯nd results that di®er from Jackwerth
(2000), in particular they do not ¯nd negative risk aversions when they use a power pricing
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kernel. However, Rosenberg and Engle (2002) ¯nd results similar to Jackwerth's results
when they use an orthogonal polynomial pricing kernel. In particular, they ¯nd that there
is a region of negative risk aversion over the range from -4% to 2% for returns.

As noticed by Rosenberg and Engle (2002), the interpretation of the risk aversion func-
tion is debatable since the estimation technique of the implied binomial tree is based on
time-aggregated data. This is the reason why Rosenberg and Engle (2002) propose to es-
timate the pricing kernel as a function of contemporaneously observed asset prices and a
predicted asset payo® density based on an asymmetric GARCH model. The price to pay
for this generality is the need to refer to a parametric model for the SDF. They propose:

m¤
t+1 = Et[

mt+1

gt+1
] = µ0t(gt+1)¡µ1t (5.25)

The parameters of interest µ0t and µ1t are then estimated at each date t in order to
minimize the sum of squared pricing errors that is di®erences between observed derivative
prices (in a cross-section of derivatives all written on the same payo® gt+1) and prices
computed with the model SDF (5.25). As in the multinomial example described in section
(2.2), there is some arbitrariness created by the choice of this particular quadratic measure
of closeness. First, as discussed in Renault (1997), one may imagine that the pricing errors
are severely heteroskedastic and mutually correlated. A GMM distance should get rid of
this better than the uniform weighting. However, as stressed by Hansen and Jagannathan
(1997), the GMM distance is probably not optimal to rank various misspeci¯ed SDFs since
it gives an unfair advantage to the most volatile SDFs.

As explained above, Hansen and Jagannathan (1997) propose to consider directly a L2

distance between SDFs. They show that it leads to a weighting matrix for pricing errors
which is only de¯ned by the covariance matrix of the net returns of interest and not by
the product of returns with the SDF as in e±cient GMM. Indeed, Buraschi and Jackwerth
(2001) observe that the ±-metric of Hansen and Jagannathan (1997) has to be preferred
to the GMM metric to select the best option pricing model since it is model independent
whereas the optimal GMMweighting matrix is model dependent and asymptotic chi-squares
tests typically reward models that generate highly volatile pricing errors.

Irrespective of the choice of a particular measure of closeness, the interpretation of
parameters µ0t and µ1t which have been estimated from (5.25) may be questionable, except
if a very speci¯c model is postulated for the agent preferences. To illustrate this point, let
us consider the general family of SDFs provided by the Epstein and Zin (1989) model of
recursive utility:
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mt+1 = ¯[
Ct+1

Ct
]°(½¡1)[

Wt+1
(Wt ¡ Ct)

]°¡1; (5.26)

where ½ = 1 ¡ 1=¾ with ¾ the elasticity of intertemporal substitution, ° = ®=½ and
a = 1¡® the index of comparative relative risk aversion. The variables Ct andWt denote
respectively the optimal consumption and wealth paths of the representative agent. They
obey the following relationship:

[Ct
Wt

] = [A(Jt)]1¡¾ ;

where Vt = A(Jt) ¢ Wt denotes the value at time t of the maximized recursive utility
function. This value Vt is proportional to the wealthWt available at time t for consumption
and investment (homothetic preferences) and the coe±cient of proportionality generally
depends upon the information Jt available at time t. Therefore:

mt+1 = ¯[
Wt+1

Wt
]¡a[
A(Jt+1)
A(Jt)

]1¡a[1 ¡ A(Jt)1¡¾ ]°¡1 (5.27)

Let us imagine, following Rosenberg and Engle (2002), that the agent wealth is proportional
to the underlying asset payo®. Then:

m¤
t+1 = Et[mt+1jgt+1] = Et[mt+1jWt+1]

will depend in general in a complicated way on the forecast of the value function A(Jt+1)
as a function of Wt+1. For instance, we see that:

Et[logmt+1jgt+1] = B(Jt)¡ a log[Wt+1

Wt
] + (1 ¡ a)Et[logA(Jt+1)jWt+1]:

This illustrates that, except in the particular case a = 1 (logarithmic utility) or in a
case where A(Jt+1) would not be correlated with Wt+1 given Jt, the parameter µ1t cannot
be interpreted as risk aversion parameter and is not constant insofar as conditional het-
eroskedasticity will lead to time varying regression coe±cients in Et[logA(Jt+1)jWt+1]. In
other words, the intertemporal features of preferences which lead the agent to a non-myopic
behavior prevent one to conclude that the risk aversion parameter is time-varying simply
because one ¯nds that the parameter µ1t is time-varying. More generally, this analysis
carries over to any missing factor in the parametric SDF model.

The general conclusion is that empirical pricing kernels which are computed without
a precise account of the state variables which enter into the value function A(Jt) cannot
provide valuable insights on intertemporal preferences. For example, Chabi-Yo, Garcia and
Renault (2002) show that in an economy with regime changes either in fundamentals or
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preferences, an application of the nonparametric methodology used by Jackwerth (2000) to
recover the absolute risl aversion will lead to similar negative estimates of the risk aversion
function in some states of wealth even though the risk aversion functions are consistent
with economic theory within each regime.

Of course, one can also question the representative agent framework. For example, Bates
(2001) points out that the industrial organization of the stock index options market does
not seem to be compatible with the representative agent construct and proposes a general
equilibrium model in which crash-tolerant market makers insure crash-averse investors.

6 Conclusion

We have tried in this survey to o®er a unifying framework to the proli¯c literature aimed
at extracting useful and sometimes pro¯table economic information from derivatives mar-
kets. The stochastic discount factor methodology is by now the central tool in ¯nance to
price assets and provides a natural framework to integrate contributions in discrete and
continuous time. Since most models are written in continuous time in option pricing we
have established the link between these models and the discrete time approaches trying to
emphasize the fundamental unity underlying both methodologies. To capture the empirical
features of the stock market returns, which is the main underlying empirically studied in
the option pricing literature, models have gained in complexity from the standard geo-
metric Brownian motion of the seminal Black and Scholes (1973) model. Jump-di®usion
models with various correlation e®ects have become increasingly complex to estimate. A
main di±culty is the interplay of the latent variables which are everywhere present in the
models and the inherent complex nonlinearities of the pricing formulas. This is the main
aspect of the estimation methods on which we put some emphasis since the estimation of
continuous time models is the object of another chapter in this Handbook.

Another major thread which underlies the survey is the interplay between preferences
and option pricing. Even though the preference-free nature of the early formulas was often
cited as a major advantage, it was not clear where this feature was coming from. We have
made a special e®ort to specify the statistical assumptions that are needed to obtain this
feature and to characterize the covariance or leverage e®ects which reintroduce preferences.
In an equilibrium framework, the role of preferences appears clearly. In approaches based
on the absence of arbitrage, these preferences are hidden in risk premia and it is harder to
account for the links they impose between the risk premia of the numerous sources of risk.
Researchers often treat these risk premia as free parameters and manage to capture some
empirical facts but a deeper economic explanation is lacking. The extraction of preferences
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from option prices using nonparametric methods is even more problematic. The puzzles
associated with this literature often come from the fact that state variables have been
omitted in the analysis.

Despite the length of the survey, there are a host of issues that we left unattended,
especially issues pertaining to the implementation of models in practice. First, it is often
di±cult to obtain synchronized price data for derivatives and underlying fundamentals.
This leads researchers to use theoretical relationships such as the put-call parity theorem
to infer forward prices for the index. The same theorem is sometimes also used to infer
prices for some far in-the-money options for which the reliability of the reported price is
questionable because of staleness or illiquidity. Other types of ¯lters such as taking out
close-to-maturity options or options with close-to-zero prices are also imposed. All these
data transformations have certainly an e®ect on model estimation and testing. A second
issue concerns the ¯nal objective of the modelling exercise. Is the model intended to forecast
future prices (or equivalently the moneyness and term structure of volatilities), to compute
hedge ratios (or other greeks) or to recover risk-neutral probabilities for a certain horizon
in order to price other derivatives on the same underlying asset? This is important both
for estimation and testing of the model. Estimating a model according to a statistical
criterion or to a ¯nancial objective leads to di®erent estimates and performance in case of
speci¯cation errors. Third, is the model taken at face value or do we recognize that it is
fundamentally misspeci¯ed? Often, a±ne jump-di®usion models are reestimated every day
or week and parameters can vary considerably from one cross-section to the other. Is it
better to assume some latent structure instead of letting parameters vary from one period
to the next? When agents make their ¯nancial decisions do they know the parameters or do
they have to learn them? Is parameter uncertainty important? Do they try to make robust
decisions? Finally, instead of exploiting fully-speci¯ed models, are the prices or bounds
obtained by imposing weak economic restrictions useful? A recent retrospective by Bates
(2003) addresses some of these issues and presents the current challenges that lie ahead.
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