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Nous considérons la détermination de l'horizon après lequel les
prévisions provenant des modèles des series chronologiques stationnares n'ajoutent
rien à la valeur de la prévision implicite dans la moyenne. Nous appellons cette
quantité le « content horizon » pour prévisions, et nous définissons la fonction de
valeur ajoutée aux horizons s = 1, … S par la réduction proportionnelle dans la
moyenne des erreurs de prévisions carrées disponible en utilisant une prévision
provenant d'un modèle formel relatif à la moyenne non-conditionelle. Cette quantité
dépend de l'incertitude dans les estimés des paramètres du modèle, ainsi que des
autocorrélations du processus considéré. Nous donnons une expression

approximative – jusqu'à o(T
-1

) – pour la fonction de valeur ajoutée à s pour les
processus autorégressifs généraux, et nous démontrons par simulation que
l'expression est bonne même dans les petits échantillons. Enfin nous considérons
les estimés paramétriques et non-paramétriques (kernel) pour la fonction de valeur
ajoutée empirique, en appliquant les résultats aux horizons de prévision pour le taux
de croissance du PNB et le taux d'inflation, au Canada et aux États-Unis.

We consider the problem of determining the horizon beyond which
forecasts from time series models of stationary processes add nothing to the
forecast implicit in the conditional mean. We refer to this as the content horizon
for forecasts, and define a forecast content function at horizons s = 1, … S as the
proportionate reduction in mean squared forecast error available from a time
series forecast relative to the unconditional mean. This function depends upon
parameter estimation uncertainty as well as on autocorrelation structure of the

process under investigation. We give an approximate expression – to o(T
-1

) – for
the forecast content function at s for a general autoregressive processes, and show
by simulation that the expression gives a good approximation even at modest
sample sizes. Finally we consider parametric and non-parametric (kernel)
estimators of the empirical forecast content function, and apply the results to
forecast horizons for inflation and the growth rate of GDP, in U.S. and Canadian
data.



Mots Clés : Processus autorégressif, horizon de prévision, PNB, taux
d'inflation

Keywords : Autoregressive Process, forecast horizon, GDP, inflation
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1 Introduction

Short-range meteorological forecasts of daily deviations from seasonal
norms of temperature and precipitation are often characterized as con-
taining useful information up to horizons of approximately ten days into
the future (somewhat less for precipitation). Longer-range forecasts of
monthly or quarterly average temperatures are useful up to about three
quarters (quarterly averages) or eleven months (monthly averages); see
for example Wilks (1996) and Colucci and Baumhefner (1992). Such
information is valuable as a guide to appropriate use of forecasts, as a
benchmark for developers of re�ned forecasting methods, and as a check
on charlatanism.

Little information of this type exists for economic variables, how-
ever. In the present paper we attempt a systematic study of the horizons
within which we can usefully forecast stationary transformations of eco-
nomic variables. We begin by de�ning forecast content for such variables
relative to the information content of the estimated unconditional mean,
and de�ne a forecast content function using relative mean squared error
as a function of the forecast horizon. We give approximate analytical
expressions whereby the forecast content function can be computed for a
general AR(p) process at a forecast horizon of s periods into the future.
For comparison and evaluation of the analytical expression, we obtain
the exact functions by simulation for particular AR processes and sample
sizes.

Empirical estimation of the forecast content function, as opposed to
its evaluation for a known process, can be carried out via substitution
of estimated parameter values into

the parametric expressions just described, or by non-parametric re-
gression. We describe both methods and apply them here to data from
Canada and the U.S. on both real GDP growth (measured quarterly) and
in
ation (in the Consumer Price Index, measured monthly). We charac-
terize the forecast content functions and forecast content horizons{spans
of time beyond which we are not able to make useful forecasts of data
at a given frequency beyond use of the unconditional mean{for each of
these time series. We �nd content horizons of about two quarters for
real GDP growth, and twenty-four (Canada) to forty (U.S.) months for
in
ation. 1 The functions and horizons obtained based on the analyt-
ical results are compared with those obtained through non-parametric

1Of course, these content horizons can in principle be extended by incorporating

information on variables other than the past of the variable to be forecast, evaluating

the chosen forecasting model using the non-parametric method, but we do not pursue

such alternatives in the present paper.
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estimation.
In section 2 we give de�nitions and analytical expressions for the

time series forecast content function and corresponding content horizons.
Section 3 provides estimates from simulations of the forecast content
functions for a variety of time series processes, compares the results
with the analytical results, and investigates robustness to heavy-tailed
and skewed error distributions. Section 4 examines parametric (based on
the analytical expressions of Section 2) and non-parametric estimators
of the empirical forecast content function, and Section 5 applies these
results to estimation of the forecast content functions and horizons for
the growth rate of real GDP and in
ation.

2 The forecast content function and con-

tent horizon

2.1 De�nitions

Let fytg
T
t=1 be a sequence of T observations on a stationary, ergodic

process y: All moments of y are assumed to be unknown. Our aim
is to forecast the value yT+s; s > 0; using the observations fytg

T
t=1:

Let this forecast be ~yT+sjT ; so that the mean squared forecast error is
E(~yT+sjT � yT+s)

2:

The sample mean y = T�1
PT

t=1 yt provides another possible forecast
of any future value, with mean squared forecast error E(yT � yT+s)

2:

For large s; information about the past of y will not improve on the
forecast implicit in the unconditional mean. We will evaluate forecasts
relative to this forecast from the unconditional mean, and will de�ne
a forecast ~yT+sjT as having positive content if E(~yT+sjT � yT+s)

2 <

E(yT � yT+s)
2; or MSE~y < MSEy:

2 For a set of forecasts at di�erent
horizons, f~yT+sjT g

S
s=1; we de�ne the forecast content function as the

proportionate reduction in mean squared forecast error available relative
to the unconditional mean forecast: that is,

C(s) = 1�
MSE~y(s)

MSEy(s)

; s = 1; : : : ; S: (2:1)

2Throughout the present paper we will con�ne ourselves to the quadratic loss

case, although content could be de�ned relative to a general loss function, since any

alternative loss function can be substituted for the MSE in (2.1). While a di�erent loss

function will in general imply a di�erent optimal predictor, the content horizon may

not be greatly a�ected, although numerical values of the forecast content function

will change.
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For the stationary, ergodic processes considered here, C(s) ! 0 as T
and s!1; for a forecast ~yT+sjT based on a correct speci�cation of the
forecasting model; our ability to improve upon the unconditional mean
as a forecast disappears with lengthening forecast horizon. For �xed
T; however, C(s) may be less than zero for values of s such that extra
parameters beyond the mean make negligible contribution to forecasting,
but raise MSE through parameter uncertainty.

Related de�nitions have been made by numerous authors, including
Granger and Newbold (1977), Box and Tiao (1977), Bhansali (1991),
Diebold and Kilian (1997), and others. Bhansali (1991), Box and Tiao
(1977), do so in de�ning a measure of R2 for time series processes; the
measure of Granger and Newbold (1977) is similar. However, here we do
not measure unexplained variance relative to true variance of the pro-
cess, but instead forecast MSE relative to the variance of the forecast
implicit in the unconditional mean, which incorporates not only process
variance and the variance of the estimate of the mean, but also parame-
ter estimation uncertainty. In each case one obtains a measure which can
in principle be computed a priori from the form of the process, for any
forecast horizon. Diebold and Kilian (1997) o�er a general framework for
de�ning predictability measures from which the other de�nitions, includ-
ing that which we will examine here, can be obtained. A survey of the
various related de�nitions, as well as applications for the quadratic loss
case such as computations of relative predictability at di�erent horizons,
can also be found in Diebold and Kilian.

Finally, we de�ne the content horizon as the forecast horizon s0 such
that C(s) � 0 for s � s0 : that is, the point beyond which forecasts
based on the unconditional mean are no worse than those obtained from
explicit forecasting models. In cases the forecast content horizon may
remain strictly positive even for large s; while approaching zero asymp-
totically in T and s; and in such cases it may be convenient to refer to
the ��level content horizon, that is, s� such that C(s) � �; s � s� and
C(s) < �; s > s�:

It is important to note that these forecast content functions and con-
tent horizons are speci�c to a given time interval between observations.
For example, a forecast content horizon of one period in annual data
does not imply a forecast content horizon of twelve in monthly data; the
two data generation processes must be examined separately.

In the next section, we examine the forecast content functions of some
parametric time series models.
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2.2 Analytical forecast content functions for autore-

gressive processes

Pure autoregressions serve as relatively good forecasting models for a
variety of processes. It is often noted, in fact, that it can be di�cult
to better the forecast performance of an AR model even with much
more elaborate forecasting structures; see for example Meese and Geweke
(1984) or Stock and Watson (1998). Stock and Watson �nd the autore-
gression the best overall method within the set of AR, arti�cial neural
network, smooth-transition autoregression and exponential smoothing
methods, in a study of forecast performance on approximately two hun-
dred macroeconomic time series. 3 Since (in both Stock and Watson and
the present study) variable lag order is used to �nd an approximation,
and chosen via an information criterion, the AR model is being used
in what might be called a non-parametric fashion. Nonetheless, we will
refer to forecast content functions from such AR models as parametric,
re
ecting the fact that our computation of the forecast content function
uses the form of the AR structure.

Consider a stationary AR(p) process �(L)yt = "t; with "t � N(0; �2"):
With known parameters, forecast error variance at any horizon s depends
only on the horizon and the parameters of the polynomial �(L): As
s!1; this variance (and therefore the forecast MSE) converges to the
unconditional variance, which is the MSE of the forecast implied by the
unconditional mean. When parameters are unknown, the forecast MSE
depends as well on the uncertainty in parameter estimates, and therefore
on sample size. 4 The same is true of the unconditional mean forecast,
which depends on the uncertainty in a single estimated parameter.

In order to obtain the forecast content function analytically, we need
expressions for the mean squared errors of both types of forecast. For
the sample mean, we can obtain asymptotically the necessary expres-
sions from a central limit theorem for processes with dependence of a
form compatible with these processes. For forecasts based on the au-
toregressive model with normal errors, expressions for the forecast MSE
accurate to O(T�

3
2 ) are given by Fuller and Hasza (1981). 5 With-

out the assumption of Normal errors, results accurate to O(T�1) are
available. In Proposition 1 we combine these to obtain an analytical ex-

3Unit root pre-tests are applied before AR model estimation, a step not explicitly

used here because of our assumption that a stationary transformation has been found.
4See Sampson (1991) on the importance of parameter uncertainty in obtaining

con�dence intervals for forecasts of processes with deterministic or stochastic trends.
5See Samaranayake and Hasza (1988), L�utkepohl (1993) for multivariate expres-

sions; Ericsson and Marquez (1998) provide a general review of forecast MSE com-

putation and related points such as potential non-monotonicity in the horizon.
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pression for the forecast content function of a correctly- speci�ed AR(p)
model estimated on a sample of size T. Forecasts are made according
to ŷT+sjT = �̂0 +

Pp

j=1 �̂j ŷT+s�jjT ; with ŷT+s�jjT = yt if s � j � 0:
Following Fuller and Hasza we de�ne

YT+s =

0
BBBBBBB@

yT+s

yT+s�1

yT+s�2

...
yT+s�p

1

1
CCCCCCCA
:

Proposition 1. Let the AR(p) process �(L)yt = "t be such that all roots
of �(L) are outside the unit circle, and let "t � IN(0; �2"): Then

C(s) = 1�
B[1;1]

�
+ o(T�1); (2:2:1a)

where B[1;1] is the top-left element of the matrix

B =

s�1X
j=0

AjMA0j + T�1

s�1X
j=0

s�1X
k=0

AjMA0k
� tr[(As�j�1�)0(��1As�k�1)];

(2:2:1b)

� =
1X
i=0

a2i

 
1� 2T�1

T+s�1X
`=s

�(`)

!
+ T�1

 
1X
i=0

ai

!2

; (2:2:1c)

and where M is the (p + 1) � (p + 1) matrix with 1 in the upper-left
corner and zeroes elsewhere, � = E(YtY

0
t ); �(`) is the autocorrelation

function at lag `; and A is the (p + 1) � (p + 1) matrix such that
Yt = AYt�1 + �t; with �t = ("t; 0; : : : 0)

0: 6 The sequence of coe�cients
faig

1
i=0 is the set of coe�cients of the innovations representation of y;

that is,

yt =
1X
i=0

ai"t�i; (2:2:2)

with a0 = 1:

Proof.
The matrix B of (2.2.1) is the expression for the s-step-ahead forecast

MSE of Y from the autoregressive predictor given by Fuller and Hasza

6The form of A is given explicitly in Fuller and Hasza (1981); the series
P
1

i=0 ai
is convergent by the stationarity of y:
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(1981, corollary 2.1), up to a factor of �2" ; the top-left element, B[1;1]; is
therefore the corresponding forecast MSE for yT+s: The scalar � is the
asymptotic mean squared error of the unconditional mean forecast, that
is, yT used as a forecast of yT+s; therefore � = E(yT � yT+s)

2 =

E[(yT � �)� (yT+S � �)]2 = var(yT ) + var(yT+s)� 2 cov(yT ; yT+s);

where � is the unconditional mean of Y: The second term in � is the
unconditional variance of the process y; equal to �2"

P
1

i=0 a
2
i ; and the

�rst term is the asymptotic variance of the unconditional mean,
�2" [T

�1(
P

1

i=0 ai)
2 + o(T�1)]; from a central limit theorem for processes

with dependence of the form in (2.2.2); see for example Theorem 6.3.3
of Fuller (1976) or Theorem 7.7.9 of Anderson (1971). The covariance

term �2 cov(yT+s; yT ) is equal to �2T
�1
PT�1

j=0 
(j + s); where 
(:) is
the autocovariance function. Dividing by 
(0) and removing the factor of
�2" ; the factors of �

2
" in B and � cancel from numerator and denominator

of in (2.1) to give C(s) = 1 �
B[1;1]+O(T

�

3
2 )

�+o(T�1)
; removing a factor of ��1

from the denominator and expanding, we obtain (2.2.1a). �

The covariance term in � converges to zero in both s and T; and
can be omitted for moderately large samples. We examine the impact
of omitting this term below.

The coe�cients of the innovations representation of a general AR(p)
or ARMA(p,q) process can be computed straightforwardly using the
well-known recursions given by, for example, Fuller (1976: Theorems
2.6.1, 2.6.2). 7 The expressions (2.2.1) can then be used directly for
computation, truncating in�nite sums at a high value. In low-order cases
it is also straightforward to simplify the expressions, as in the following.

Example. For the AR(1) process with mean zero and parameter �;

ai = �i; A =

�
� 0
0 1

�
; M =

�
1 0
0 0

�
; � =

�
�2y 0
0 1

�
; and from

(2.2.1) the forecast content function to o(T�1) is:

7Note that the forecast content function for a stationary, invertible ARMA process

can also be obtained using an autoregressive approximation to the ARMA process,

as in Galbraith and Zilde-Walsh (1997), in the numerator of (2.2.1).
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C(s) = 1�

" Ps�1

j=0
�2j + T�1

Ps�1

j=0

Ps�1

k=0
�j+k(1 + �(2s�j�k�2))

(
P
1

i=0 �
2i)(1� 2T�1

PT+s�1

`=s �(`)) + T�1(
P
1

i=0 �
i)2)

#

= 1�

2
4 (1� �2s)(1� �2)�1 + T�1

Ps�1

j=0

Ps�1

k=0
�j+k(1 + �(2s�j�k�2))

(1� �2)�1
h
1� 2T�1�s(�

T
�1

��1
)
i
+ T�1(1� �)�2

3
5 :

(2:2:3)

For a model which is correctly speci�ed in the sense that the true
process is autoregressive of order p� � p; consistency of the estimated
forecast content function follows from consistency of the parameter es-
timates (from, for example, OLS or Yule-Walker estimators); however,
it is the �nite sample performance of the estimates of C(s); embodying
parameter estimation error, which are of greater interest. We examine
this in section 3.

3 Simulated forecast content functions

In this section we compare the forecast content functions from the an-
alytical expressions above with simulated functions, and also consider
simulated functions for a number of cases not directly covered by Propo-
sition 1, including heavy-tailed and skewed error distributions.

3.1 Analytical results vs. �nite-sample results from

simulation

Figure 1 (a/b/c/d) compares the forecast content function for s = 1; : : : 20
computed from expression (2.2.1), or (2.2.3) in AR(1) cases, with a sim-
ulation estimate of the exact function, for speci�c parameter values in
AR(1) (Figure 1 a/b) and AR(2) (Figure 1 c/d) processes. 8 The simu-
lated forecast content functions are obtained from 50,000 replications of
experiments with normally-distributed pseudo-random errors, in which
mean squared errors for forecasts based on both the AR model and
the in-sample mean are computed for each s and for sample sizes T =
f100; 400g: In the AR(1) case, we use roots of 0:4 and 0:8: In the AR(2)
case, we use roots of 0:8; 0:3 and 0:8;�0:5; corresponding to parameters

8The in�nite sums in (2.2.1c) are truncated at 50.
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(�1; �2) of 1:1;�0:24 and 0:3; 0:4: Results for AR(1) roots are approx-
imately, but not exactly, symmetric around zero. A further approxi-
mation is examined in which the covariance term �2 cov(yT+s; yT ) =

�2T�1
PT�1

j=0 
(j + s); which appears in (2.2.1c) scaled by the process

variance, is omitted; This term, while only O(T�1), tends to be small at
moderately large sample sizes.

There are several noteworthy features. First, the analytical results
from (2.2.1/2.2.3), while exact only asymptotically, provide a very good
approximation even at T = 100; the analytical and simulated forecast
content functions are di�cult to distinguish visually. This holds true in
both AR(1) and AR(2) cases. With the covariance term omitted (\ex-
cov" in the Figures), the analytical form gives, a good approximation
at T = 100; but the approximation is clearly distinguishable visually
from the `true' function. At T = 400 the simulated and analytical func-
tions are di�cult to distinguish visually whether or not cov(yT+s; yT )
is incorporated; for clarity only the \ex-cov" form is recorded.

Second (a feature not easy to read from the graphical results pre-
sented here), the true forecast content functions obtained by simulation
can take on negative values at long horizons. This possibility arises be-
cause the forecast based on the sample mean requires estimation of only
one parameter, while a model using an autoregression or other multi-
parameter model for forecasting estimates the additional parameters of
the model as well. The extra parameter or parameters lead to slightly
higher variance, which is more than o�set by the information content
in the past of the process of interest for small s; however, for large s;
the information content can be su�ciently low that the extra parame-
ters dominate and leave the forecast content function slightly negative.
For example, in the AR(2) case with roots of 0.8 and 0.3, the forecast
content function at T = 100; s = 20 is �9� 10�3; at T = 400; s = 20
it is �2� 10�4:

It is easy to see that the forecast content is roughly zero by lag 10
for each of the cases considered here, despite the fact that three of the
four examples contain a fairly large root, of 0.8. The 5% forecast content
horizons, that is, the horizons beyond which forecast content is strictly
less than :05; are (for T = 400) s = 1 and s = 6 for AR(1) roots of 0.4
and 0.8 respectively, s = 7 and s = 5 for AR(2) roots of 0:8; 0:3 and
0:8;�0:5 respectively.

3.2 Impact of some non-Normal error distributions

We now consider the adequacy of the forecast content functions obtained
via the expression (2.1.1) using the Normal distribution, where errors are

8



in fact heavy-tailed or skewed. To do so we repeat the simulations of
section 3.1, making a comparison of the simulated forecast content func-
tions with Normal pseudo-random errors (well approximated by (2.1.1))
with those applying where errors have t� or �2� distributions. The
simulations again use 50,000 replications.

For heavy-tailed errors we draw from the t4 distribution. The t4 has
variance of 2; its 99th and 99.5th percentiles are 3.747 and 4.604. For
the Normal distribution with mean zero and variance of 2, the 99th and
99.5th percentiles are 3.289 and 3.643. For skewed errors, we use the �28;
which has median 7.34 (versus mean of 8), with 1st and 99th percentiles
of 1.65 and 20.1; the �28 errors are re-scaled to mean zero here. 9

The resulting forecast content functions are in some cases di�cult to
distinguish visually from those pertaining to Normal errors, and so are
presented in Table 1 rather than graphically, using the AR(2) models of
Figure 1c/d for comparison; AR(1) results show similarly small discrep-
ancies. Since the discrepancies relative to the Normal case are similar
for T = 100 and 400; we present only T = 100:

Table 1

Simulated Forecast Content Functions, Normal and non-Normal errors
AR(2) cases, T = 100

N(0; �2) t4 �28
�i s

0.8,0.3 1 0.794 0.796 0.789
0.8,0.3 2 0.545 0.548 0.534
0.8,0.3 3 0.351 0.353 0.341
0.8,0.3 4 0.214 0.218 0.211
0.8,0.3 5 0.129 0.132 0.127
0.8,0.3 6 0.075 0.077 0.079

0.8,-0.5 1 0.352 0.355 0.344
0.8,-0.5 2 0.303 0.306 0.296
0.8,-0.5 3 0.149 0.150 0.148
0.8,-0.5 4 0.103 0.107 0.106
0.8,-0.5 5 0.060 0.061 0.058
0.8,-0.5 6 0.036 0.036 0.039

9Results are similar for neighbouring values of these degrees of freedom

parameters.
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Clearly the forecast content functions computed via (2.1.1) are robust
to substantial departures from Normality and symmetry. Of the two
alternative distributions, the �28 produces the larger discrepancies.

4 Parametric and non-parametric estima-

tion of forecast content functions

For an AR process with given parameters, the forecast content function
can be obtained from (2.1.1). In an empirical context where the parame-
ters are unknown, the function may be estimated parametrically if an AR
(or, by approximation, ARMA) process is used, or non-parametrically.
It is important to distinguish estimation of the forecast content function
from estimation of the underlying forecasting model; non-parametric
estimation of the forecast content function can be carried out for a fore-
casting model which will itself usually be parametric. This will be the
case in the empirical study of section 5, where the forecast content func-
tion for AR(p) forecasting models will be estimated both parametrically
and non-parametrically.

Parametric estimation may be carried out by substituting consistent
estimates of the p + 1 parameters (mean and autoregressive terms), �̂;
into the matrix A of (2.1.1), and proceeding as with known autoregressive
parameters to compute C(s). Whether or not the forecasting model
is autoregressive, the forecast content function can also be evaluated
without imposing the form of forecast content function implied by an
autoregressive forecasting model. We refer to such estimation as non-
parametric, and will carry it out using kernel regression techniques (see,
for example, H�ardle, 1990, for an introduction); other non-parametric
techniques, as well as purely unsmoothed estimates, may also be used.

The estimation problem here has the feature that the function of
interest (the forecast content function ) will have a non-zero slope for
low values of s; except in the degenerate case in which forecast content
is zero at all horizons. For this reason, the problem of bias near a
boundary that occurs in standard kernel regression estimators, such as
that of Nadaraya and Watson, will be important. We therefore do not
use such locally-constant kernel regression estimators, but instead the
locally-linear kernel estimator examined by, among others, Fan (1992,
1993). This kernel regression estimator in e�ect extends the traditional
locally-constant approach by incorporating an additional term in the
numerator and denominator of the expression which yields the estimated
regression function, with the result that the bias is not dependent on the
derivatives of the marginal density.
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To obtain these non-parametric forecast content function estimates,
we use the following sequence of steps:

(i) estimate the parameters of the forecasting model on the full sam-
ple;

(ii) using the parameterized forecastingmodel, forecast each in-sample
observation t > t0 = p + s + 1; at each horizon s = f1; : : : Sg; (where p
is the number of lags required by the forecasting model);

(iii) from the set of forecasts, obtain the sequence of pairs fz(s; t); sg;
s = 1; : : : S; t = t0; : : : T; where

z(s; t) =

 
(ŷtjt�s � yt)

2

(T � t0 + 1)�1
PT

t=t0
(y � yt)2

!
; (4:1:1)

(iv) compute the locally linear regression of the set of �rst elements
zi on the �xed grid of regressors given by the set of second elements
(s = 1; : : : S), and subtract from a corresponding S � 1 vector of ones.

The term z(s; t) represents the squared error of the model-based fore-
cast for s and t relative to the overall MSE of mean-based forecasts; the
�nal step performs a non-parametric regression of this quantity on the
forecast horizon. The denominator of the expression (4.1.1), the average
MSE from forecasts based on the mean given the same set of observations
used in computing the numerator, is used in order to avoid occasional
division by very small values, and the attendant variability.

Full-sample parameter estimates are used since we are evaluating the
forecast content function at the existing full sample, not at points in
the past. In the limit as bandwidth approaches zero (no smoothing is
applied), step (iv) is equivalent to plotting the average over t at each s of
the �rst terms in (4.1.1), independently of the averages at other values of
s. We refer to the latter estimate of the function as the unsmoothed non-
parametric estimate. In other words, we may estimate the conditional
expectation of the forecast content at a given forecast horizon without
smoothing by averaging sample values of forecast content at that horizon;
alternatively, we may smooth the estimates by taking into account the
estimated forecast content at neighbouring values of s as well.

In the next section, we estimate forecast content functions for some
monthly and quarterly time series using both parametric and non-parametric
methods.
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5 Forecast content functions for quarterly

real GDP growth and in
ation

We now consider estimated forecast content functions for four data series
which can be transformed to approximate stationarity by computing
growth rates: price level and real GDP, in Canada and the U.S. 10

For each of the four transformed time series (in
ation and real GDP
growth) we estimate a sequence of autoregressive models, and select a
model using the Schwarz information criterion; this model is then used
directly for forecasting, and its parameters are used to produce the fore-
cast content function by (2.2.1). The forecast content function obtained
from the parameters is then compared with the same function estimated
non-parametrically using a locally-linear kernel method with Gaussian
kernel. 11 Again, because we are interested in obtaining the forecast
content function that applies at the size of sample now available, full-
sample parameter estimates are used in the computations. The results
appear in Figures 2a/b and 3a/b; the model orders selected by the SIC
are 2 and 1 for real GDP growth in Canada and the U.S., 7 and 10 for
in
ation in Canada and the U.S.

Figure 2 describes real GDP growth forecasts. In the U.S. data,
parametric (from (2.2.1)) and non-parametric forecast content functions
correspond very closely; in Canadian data, the direct estimates become
slightly negative beyond two quarters, but are more substantial in the
�rst quarter. On both Canadian and U.S. data, forecast content is vir-
tually zero beyond two quarters.

Figure 3 describes monthly in
ation forecasts. On both samples
there is a fairly close match between parametric and non-parametric
estimates, although the non-parametric estimates tend to be somewhat
more optimistic. The forecast content horizon extends to about twenty-
four months in Canada, and to about forty (only twenty-four quarters
are reproduced in Figure 3b) in the U.S.

In comparing the parametric and non-parametric estimates, note that

10Quarterly Canadian data on seasonally adjusted real GDP are available from

1947:1 as series D20463 in CANSIM; US seasonally-adjusted real GDP are available

from 1947:1 from the Survey of Current Business, Table 2A. Monthly Canadian CPI

data (all items, not seasonally adjusted) are available from 1914:1 as P700000 in

CANSIM; US CPI data from 1946:1 are taken from the Federal Reserve Bank of St.

Louis FRED database.
11Forecast content functions estimated by the standard Nadaraya-Watson (locally

constant) kernel regression are not shown because of the boundary problem noted

in section 3: in each of the cases examined here, they di�er from the locally-linear

estimates in that the estimated regression function lies substantially below the locally

linear estimate for small s:
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the parametric estimates are based on the smaller number of parameters
(the autoregressive parameters estimates alone) than the non-parametric
estimates, for which the forecast content at each horizon must be esti-
mated as a separate quantity based on a separate sequence of computed
forecasts. The parametric quantities show a correspondingly greater
smoothness (visible in Figure 3), are much less cumbersome to compute,
and, where the model class used in Proposition 1 provides a good ap-
proximation to the process, will be more e�cient. The non-parametric
estimates, however, do not use information about model form and may
be computed for any forecasting model, parametric or non-parametric,
requiring only a realized set of in-sample forecasts. In these examples the
two types of estimate produce similar results, although on in
ation data
the non-parametric estimates of forecast content tend to be somewhat
more optimistic at intermediate values of s:

These forecast content functions are based purely on information
which can be extracted from the past of the process of interest by linear
models. Of course, we would expect that in many cases the forecast
content can be raised, especially at short horizons, by incorporating ap-
propriate additional explanatory variables. The forecast content from
the pure time series model provides an overall lower bound on forecast
content and a base against which to evaluate the potential of alternative
models to extend the forecast horizon.

6 Concluding remarks

Forecast content and the horizon beyond which there is no content{that
is, the model produces forecasts no better than the unconditional mean{
can be estimated for purely autoregressive forecasting models using only
the AR coe�cients, and for general forecasting models can be estimated
by non-parametric methods.

Such results provide benchmarks for interpretation of published fore-
casts; the application of the methods here to macro-economic time series
suggest forecast horizons which are shorter than the maximum horizon
provided in some published forecasts, suggesting that such forecasts may
be of little value.
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