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Résumé/abstract 

 

We study the distribution of Durbin-Wu-Hausman (DWH) and Revankar-Hartley (RH) tests for exogeneity 

from a finite-sample viewpoint, under the null and alternative hypotheses. We consider linear structural 

models with possibly non-Gaussian errors, where structural parameters may not be identified and where 

reduced forms can be incompletely specified (or nonparametric). On level control, we characterize the null 

distributions of all the test statistics. Through conditioning and invariance arguments, we show that these 

distributions do not involve nuisance parameters. In particular, this applies to several test statistics for 

which no finite-sample distributional theory is yet available, such as the standard statistic proposed by 

Hausman (1978). The distributions of the test statistics may be non-standard – so corrections to usual 

asymptotic critical values are needed – but the characterizations are sufficiently explicit to yield finite-

sample (Monte-Carlo) tests of the exogeneity hypothesis. The procedures so obtained are robust to weak 

identification, missing instruments or misspecified reduced forms, and can easily be adapted to allow for 

parametric non-Gaussian error distributions. We give a general invariance result (block triangular 

invariance) for exogeneity test statistics. This property yields a convenient exogeneity canonical form and a 

parsimonious reduction of the parameters on which power depends. In the extreme case where no structural 

parameter is identified, the distributions under the alternative hypothesis and the null hypothesis are 

identical, so the power function is flat, for all the exogeneity statistics. However, as soon as identification 

does not fail completely, this phenomenon typically disappears. We present simulation evidence which 

confirms the finite-sample theory. The theoretical results are illustrated with two empirical examples: the 

relation between trade and economic growth, and the widely studied problem of the return of education to 

earnings. 

Mots clés/keywords: Exogeneity; Durbin-Wu-Hausman test; weak instrument; incomplete model; non-

Gaussian; weak identification; identification robust; finite-sample theory; pivotal; invariance;Monte Carlo 

test; power. 
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1. Introduction

The literature on weak instruments is now considerable and has often focused on inference for the
coefficients of endogenous variables in so-called “instrumental-variable regressions” (or “IV re-
gressions”); see the reviews of Stock, Wright and Yogo (2002), Dufour (2003), Andrews and Stock
(2007), and Poskitt and Skeels (2012). Although research on tests for exogeneity in IV regressions
is considerable, most of these studies either deal with cases where instrumental variables are strong
(thus leaving out issues related to weak instruments), or focus on the asymptotic properties of ex-
ogeneity tests.1 To the best of our knowledge, there is no study on the finite-sample performance
of exogeneity tests when IVs can be arbitrary weak, when the errors may follow a non-Gaussian
distribution, or when the reduced form is incompletely specified. The latter feature is especially im-
portant to avoid losing the validity of the test procedure when important instruments are “left-out”
when applying an exogeneity test, as happens easily for some common “identification-robust” tests
on model structural coefficients [see Dufour and Taamouti (2007)].

In this paper, we investigate the finite-sample properties (size and power) of exogeneity tests
of the type proposed by Durbin (1954), Wu (1973), Hausman (1978), and Revankar and Hartley
(1973), henceforth DWH and RH tests, allowing for: (a) the possibility of identification failure
(weak instruments); (b) model errors with non-Gaussian distributions, including heavy-tailed dis-
tributions which may lack moments (such as the Cauchy distribution); and (c) incomplete reduced
forms (e.g., situations where important instruments are missing or left out) and arbitrary heterogene-
ity in the reduced forms of potentially endogenous explanatory variables.

As pointed out early by Wu (1973), a number of economic hypotheses can be formulated in
terms of independence (or “exogeneity”) between stochastic explanatory variables and the distur-
bance term in an equation. These include, for example, the permanent income hypothesis, expected
profit maximization, and recursiveness hypotheses in simultaneous equations. Exogeneity (or “pre-
determination”) assumptions can also affect the “causal interpretation” of model coefficients [see
Simon (1953), Engle, Hendry and Richard (1982), Angrist and Pischke (2009), Pearl (2009)], and
eventually the choice of estimation method.

To achieve the above goals, we consider a general setup which allows for non-Gaussian distribu-
tions and arbitrary heterogeneity in reduced-form errors. Under the assumption that the distribution
of the structural errors (given IVs) is specified up to an unknown factor (which may depend on IVs),
we show that exact exogeneity tests can be obtained from all DWH and RH statistics [including
Hausman (1978) statistic] through the Monte Carlo test (MCT) method [see Dufour (2006)]. The
null distributions of the test statistics typically depend on specific instrument values, so “critical

1See, for example, Durbin (1954), Wu (1973, 1974, 1983a, 1983b), Revankar and Hartley (1973), Farebrother (1976),
Hausman (1978), Revankar (1978), Dufour (1979, 1987), Hwang (1980, 1985), Kariya and Hodoshima (1980), Hausman
and Taylor (1981), Spencer and Berk (1981), Nakamura and Nakamura (1981, 1985), Engle (1982), Holly (1982, 1983b,
1983a), Holly and Monfort (1983), Reynolds (1982), Smith (1983, 1984, 1985, 1994), Thurman (1986), Rivers and
Vuong (1988), Smith and Pesaran (1990), Ruud (1984, 2000), Newey (1985a, 1985b), Davidson and Mackinnon (1985,
1985, 1989, 1990, 1993), Meepagala (1992), Wong (1996, 1997)„ Ahn (1997), Staiger and Stock (1997), Hahn and
Hausman (2002), Baum, Schaffer and Stillman (2003), Kiviet and Niemczyk (2006, 2007), Blundell and Horowitz (2007),
Guggenberger (2010), Hahn, Ham and Moon (2010), Jeong and Yoon (2010), Chmelarova and Hill (2010), Kiviet and
Pleus (2012), Lee and Okui (2012), Kiviet (2013), Wooldridge (2014, 2015), Caetano (2015), Doko Tchatoka (2015a),
Kabaila, Mainzer and Farchione (2015), and Lochner and Moretti (2015).
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values” should also depend on the latter. Despite this, the MCT procedure automatically controls
the level irrespective of this complication, and thus avoids the need to compute critical values. Of
course, as usual, the null hypothesis is interpreted here as the conjunction of all model assumptions
(including “distributional” ones) with the exogeneity restriction.

The finite-sample tests built in this way are also robust to weak instruments, in the sense that
they never over-reject the null hypothesis of exogeneity even when IVs are weak. This entails
that size control is feasible in finite samples for all DWH and RH tests [including the Hausman
(1978) test]. All exogeneity tests considered can also be described as identification-robust in finite
samples. These conclusions stand in contrast with ones reached by Staiger and Stock (1997, Section
D) who argue – following a local asymptotic theory – that size adjustment may not be feasible due
to the presence of nuisance parameters in the asymptotic distribution. Of course, this underscores
the fundamental difference between a finite-sample theory and an asymptotic approximation, even
when the latter is “improved”.

More importantly, we show that the proposed Monte Carlo test procedure remains valid even if
the right-hand-side (possibly) endogenous regressors are heterogenous and the reduced-form model
is incompletely specified (missing instruments). Because of the latter property, we say that the
DWH and RH tests are robust to incomplete reduced forms. For example, robustness to incomplete
reduced forms is relevant in macroeconomic models with structural breaks in the reduced form: this
shows that exogeneity tests remain applicable without knowledge of break dates. In such contexts,
inference on the structural form may be more reliable than inference on the reduced form. This is
of great practical interest, for example, in inference based on IV regressions and DSGE models.
For further discussion of this issue, see Dufour and Taamouti (2007), Dufour, Khalaf and Kichian
(2013) and Doko Tchatoka (2015b).

We study analytically the power of the tests and identify the crucial parameters of the power
function. In order to do this, we first prove a general invariance property (block triangular invari-
ance) for exogeneity test statistics – a result of separate interest, e.g. to study how nuisance pa-
rameters may affect the distributions of exogeneity test statistics. This property yields a convenient
exogeneity canonical form and a parsimonious reduction of the parameters on which power depends.
In particular, we give conditions under which exogeneity tests have no power, and conditions under
which they have power. We show formally that the tests have little power when instruments are
weak. In particular, the power of the tests cannot exceed the nominal level if all structural parame-
ters are completely unidentified. Nevertheless, power may exist as soon as one instrument is strong
(partial identification).

We present a Monte Carlo experiment which confirms our theoretical findings. In particular,
simulation results confirm that the MCT versions of all exogeneity statistics considered allow one
to control test size perfectly, while usual critical values (under a Gaussian error assumption) are
either exact or conservative. The conservative property is visible in particular when the two-stage-
least-squares (2SLS) estimator of the structural error variance is used in covariance matrices. In
such cases, the MCT version of the tests allows sizable power gains.

The results are also illustrated through two empirical examples: the relation between trade and
economic growth, and the widely studied problem of the return of education to earnings.

The paper is organized as follows. Section 2 formulates the model studied, and Section 3 de-
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scribes the exogeneity test statistics, including a number of alternative formulations (e.g., linear-
regression-based interpretations) which may have different analytical and numerical features. In
Section 4, we give general characterizations of the finite-sample distributions of the test statistics
and show how they can be implemented as Monte Carlo tests, with either Gaussian or non-Gaussian
errors. In Section 5, we give the general block-triangular invariance result and describe the as-
sociated exogeneity canonical representation. Power is discussed in Section 6. The simulation
experiment is presented in Section 7, and the empirical illustration in Section 8. We conclude in
Section 9. Additional details on the formulation of the different test statistics and the proofs are
supplied in Appendix.

Throughout the paper, Im stands for the identity matrix of order m. For any full-column-rank
T ×m matrix A, P̄[A] = A(A′A)−1A′ is the projection matrix on the space spanned by the columns of
A, and M̄[A] = IT − P̄[A]. For arbitrary m×m matrices A and B, the notation A > 0 means that A is
positive definite (p.d.), A ≥ 0 means A is positive semidefinite (p.s.d.), and A ≤ B means B−A ≥ 0.
Finally, ‖A‖ is the Euclidian norm of a vector or matrix, i.e., ‖A‖ = [tr(A′A)]

1
2 .

2. Framework

We consider a structural model of the form:

y = Y β +X1γ +u , (2.1)

Y = g(X1, X2, X3, V, Π̄) , (2.2)

where (2.1) is a linear structural equation, y ∈ R
T is a vector of observations on a dependent vari-

able, Y ∈ R
T×G is a matrix of observations on (possibly) endogenous explanatory variables which

are determined by equation (2.2), X1 ∈ R
T×k1 is a matrix of observations on exogenous variables

included in the structural equation (2.1), X2 ∈ R
T×k2 and X3 ∈ R

T×k3 are matrices of observations
on exogenous variables excluded from the structural equation, u = (u1, . . . , uT )′ ∈ R

T is a vector of
structural disturbances, V = [V1, . . . , VT ]′ ∈ R

T×G is a matrix of random disturbances, β ∈ R
G and

γ ∈ R
k1 are vectors of unknown fixed structural coefficients, and Π̄ is a matrix of fixed (typically

unknown) coefficients. We suppose G ≥ 1, k1 ≥ 0, k2 ≥ 0, k3 ≥ 0, and denote:

X = [X1, X2] = [x1, . . . , xT ]′ , X̄ = [X1, X2, X3] = [x̄1, . . . , x̄T ]′ , (2.3)

Ȳ = [Y, X1] , Z = [Y, X1, X2] = [z1, . . . , zT ]′ , Z̄ = [Y, X1, X2, X3] = [z̄1, . . . , z̄T ]′ , (2.4)

U = [u, V ] = [U1, . . . , UT ]′ . (2.5)

Equation (2.2) usually represents a reduced-form equation for Y . The form of the function g(·) may
be nonlinear or unspecified, so model (2.2) can be viewed as “nonparametric” or “semiparametric”.
The inclusion of X3 in this setup allows for Y to depend on exogenous variables not used by the
exogeneity tests. This assumption is crucial, because it characterizes the fact that we consider here
“incomplete models” where the reduced form for Y may not be specified and involves unknown
exogenous variables. It is well known that several “identification-robust” tests for β [such as those
proposed by Kleibergen (2002) and Moreira (2003)] are not robust to allowing a general reduced
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form for Y such as the one in (2.2); see Dufour and Taamouti (2007) and Doko Tchatoka (2015b).
We also make the following rank assumption on the matrices [Y, X ] and

[

P̄[X ]Y, X1
]

:

[Y, X ] and
[

P̄[X ]Y, X1
]

have full-column rank with probability one (conditional on X). (2.6)

This (fairly standard) condition ensures that the matrices X , M̄[X1]Y and M̄[X ]Y have full column
rank, hence the unicity of the least-squares (LS) estimates when each column of Y is regressed on
X , as well as the existence of a unique two-stage-least-squares (2SLS) estimate for β and γ based
on X as the instrument matrix. Clearly, (2.6) holds when X has full column rank and the conditional
distribution of Y given X is absolutely continuous (with respect to the Lebesgue measure).

A common additional maintained hypothesis in this context consists in assuming that g(·) is a
linear equation of the form

Y = X1Π1 +X2Π2 +V = XΠ +V (2.7)

where Π1 ∈ R
k1×G and Π2 ∈ R

k2×G are matrices of unknown reduced-form coefficients. In this case,
the reduced form for y is

y = X1π1 +X2π2 + v (2.8)

where π1 = γ +Π1 β , π2 = Π2 β , and v = u+V β . When the errors u and V have mean zero (though
this assumption may also be replaced by another “location assumption”, such as zero medians), the
usual necessary and sufficient condition for identification of this model is

rank(Π2) = G . (2.9)

If Π2 = 0, the instruments X2 are irrelevant, and β is completely unidentified. If 1 ≤ rank(Π2) < G,
β is not identifiable, but some linear combinations of the elements of β are identifiable [see Dufour
and Hsiao (2008) and Doko Tchatoka (2015b)]. If Π2 is close not to have full column rank [e.g.,
if some eigenvalues of Π ′

2Π2 are close to zero], some linear combinations of β are ill-determined
by the data, a situation often called “weak identification” in this type of setup [see Dufour (2003),
Andrews and Stock (2007)].

We study here, from a finite-sample viewpoint, the size and power properties of the exogeneity
tests of the type proposed by Durbin (1954), Wu (1973), Hausman (1978), and Revankar and Hart-
ley (1973) for assessing the exogeneity of Y in (2.1) - (2.7) when: (a) instruments may be weak; (b)
[u, V ] may not follow a Gaussian distribution [e.g., heavy-tailed distributions which may lack mo-
ments (such as the Cauchy distribution) are allowed]; and (c) the usual reduced-form specification
(2.7) is misspecified, and Y follows the more general model (2.2) which allows for omitted instru-
ments, an unspecified nonlinear form and heterogeneity. To achieve this, we consider the following
distributional assumptions on model disturbances (where P[·] refers to the relevant probability mea-
sure).

Assumption 2.1 CONDITIONAL SCALE MODEL FOR THE STRUCTURAL ERROR DISTRIBUTION.
For some fixed vector a in R

G, we have:

u = Va+ e , (2.10)
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e = (e1, . . . , eT )′ = σ1(X̄)ε , (2.11)

where σ1(X̄) is a (possibly random) function of X̄ such that P[σ1(X̄) 6= 0 | X̄ ] = 1, and the condi-
tional distribution of ε given X̄ is completely specified.

Assumption 2.2 CONDITIONAL MUTUAL INDEPENDENCE OF e AND V . V and ε are indepen-
dent, conditional on X̄.

In the above assumptions, possible dependence between u and V is parameterized by a, while ε
is independent of V (conditional on X̄), and σ1(X̄) is an arbitrary (possibly random) scale parameter
which may depend on X̄ (except for the non-degeneracy condition P[σ1(X̄) 6= 0 | X̄ ] = 1). So we
call a the “endogeneity parameter” of the model. Assumption 2.1 is quite general and allows for
heterogeneity in the distributions of the reduced-form disturbances Vt , t = 1, . . . , T. In particular, the
rows of V need not be identically distributed or independent. Further, non-Gaussian distributions
are covered, including heavy-tailed distributions which may lack second moments (such as the
Cauchy distribution). In such cases, σ1(X̄)2 does not represent a variance. Since the scale factor
may be random, we can have σ1(X̄) = σ̄(X̄ , V, e). Of course, these conditions hold when u = σ ε,
where σ is an unknown positive constant and ε is independent of X with a completely specified
distribution. In this context, the standard Gaussian assumption is obtained by taking: ε ∼ N[0, IT ] .
The distributions of ε and σ1 may also depend on a subset of X̄ , such as X = [X1, X2]. Note also
the parameter a is not presumed to be identifiable, and e may not be independent of V – though this
would be a reasonable additional assumption to consider in the present context.

In this context, we consider the hypothesis that Y can be treated as independent of u in (2.1),
deemed the (strict) exogeneity of Y with respect to u, so no simultaneity bias would show up if
(2.1) is estimated by least squares. Under the Assumptions 2.1 and 2.2, a = 0 is clearly a sufficient
condition for u and e to be independent. Further, as soon as V has full column rank with probability
one, a = 0 is also necessary for the latter independence property. This leads one to test:

H0 : a = 0 . (2.12)

We stress here that “exogeneity” may depend on a set of conditioning variables (X̄), though of
course we can have cases where it does not depend on X̄ or holds unconditionally. The setup we
consider in this paper allows for both possibilities.

Before we move to describe tests of exogeneity, it will be useful to study how H0 can be reinter-
preted in the more familiar language of covariance hypotheses, provided standard second-moment
assumptions are made.

Assumption 2.3 HOMOSKEDASTICITY. The vectors Ut = [ut , V ′
t ]
′, t = 1, . . . , T, have zero means

and the same (finite) nonsingular covariance matrix:

E[UtU
′

t | X̄ ] = Σ =

[

σ2
u σ ′

Vu
σVu ΣV

]

> 0 , t = 1, . . . , T. (2.13)

where σ2
u, σVu and ΣV may depend on X̄.
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Assumption 2.4 ORTHOGONALITY BETWEEN e AND V . E[Vt et | X̄ ] = 0, E[et | X̄ ] = 0 and
E[e2

t | X̄ ] = σ2
e , for t = 1, . . . , T .

Under the above assumptions, the reduced-form disturbances

Wt = [vt , V ′
t ]
′ = [ut +V ′

t β , V ′
t ]
′, t = 1, . . . , T, (2.14)

also have a nonsingular covariance matrix (conditional on X̄),

Ω =

[

σ2
u +β ′ΣV β +2β ′σVu β ′ΣV +σ ′

Vu
ΣV β +σVu ΣV

]

. (2.15)

In this context, the exogeneity hypothesis of Y can be formulated as

H0 : σVu = 0 . (2.16)

Further,
σVu = ΣV a , σ2

u = σ2
e +a′ΣV a = σ2

e +σ ′
VuΣ−1

V σVu , (2.17)

so σVu = 0 ⇔ a = 0, and the exogeneity of Y can be assessed by testing whether a = 0. Note,
however, that Assumptions 2.3 and 2.4 will not be needed for the results presented in this paper.

In order to study the power of exogeneity tests, it will be useful to consider the following sepa-
rability assumptions.

Assumption 2.5 ENDOGENEITY-PARAMETER DISTRIBUTIONAL SEPARABILITY. Π̄ is not re-
stricted by a, and the conditional distribution of [V, e] given X̄ does not depend on the parameter
a.

Assumption 2.6 REDUCED-FORM LINEAR SEPARABILITY FOR Y . Y satisfies the equation

Y = g(X1, X2, X3, Π̄)+V . (2.18)

Assumption 2.5 means that the distributions of V and e do not depend on the endogeneity pa-
rameter a, while Assumption 2.6 means that V can be linearly separated from g(X1, X2, X3, Π̄) in
(2.2).

3. Exogeneity tests

We consider the four statistics proposed by Wu (1973) [Tl, l = 1,2,3,4], the statistic proposed by
Hausman (1978) [H1] as well as some variants [H2, H3] occasionally considered in the literature
[see, for example, Hahn et al. (2010)], and the test suggested by Revankar and Hartley (1973, RH)
[R]. These statistics can be formulated in two alternative ways: (1) as Wald-type statistics for
the difference between the two-stage least squares (2SLS) and the ordinary least squares (OLS)
estimators of β in equation (2.1), where different statistics are obtained by changing the covariance
matrix; or (2) a F-type significance test on the coefficients of an “extended” version of (2.1), so
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the different statistics can be written in terms of the difference between restricted and unrestricted
residual sum of squares.

3.1. Test statistics

We now give a unified presentation of different available DWH-type statistics. The test statistics
considered can be written as follows:

Ti = κ i(β̃ − β̂ )′Σ̃−1
i (β̃ − β̂ ) , i = 1, 2, 3, 4, (3.1)

H j = T (β̃ − β̂ )′Σ̂−1
j (β̃ − β̂ ) , j = 1, 2, 3, (3.2)

R = κR
(

y′ΨR y/ σ̂2
R

)

, (3.3)

where β̂ and β̃ are the ordinary least squares (OLS) estimator and two-stage least squares (2SLS)
estimators of β , i.e.

β̂ = (Y ′M1Y )−1Y ′M1 y , (3.4)

β̃ = [(PY )′M1(PY )]−1(PY )′M1 y = (Y ′N1Y )−1Y ′N1 y , (3.5)

while we denote γ̂ and γ̃ the corresponding OLS and 2SLS estimators of γ , and

M1 = M̄[X1] , P = P̄[X ] , M = M̄[X ] = IT − P̄[X ] , N1 = M1P , (3.6)

Σ̃1 = σ̃2
1∆̂ , Σ̃2 = σ̃2

2∆̂ , Σ̃3 = σ̃2∆̂ , Σ̃4 = σ̂2∆̂ , (3.7)

Σ̂1 = σ̃2Ω̂−1
IV − σ̂2Ω̂−1

LS , Σ̂2 = σ̃2∆̂ , Σ̂3 = σ̂2∆̂ , (3.8)

∆̂ = Ω̂−1
IV − Ω̂−1

LS , Ω̂IV =
1
T

Y ′N1Y , Ω̂LS =
1
T

Y ′M1Y, (3.9)

û = y−Y β̂ −X1γ̂ = M1(y−Y β̂ ) , ũ = y−Y β̃ −X1γ̃ = M1(y−Y β̃ ) , (3.10)

σ̂2 =
1
T

û′û =
1
T

(y−Y β̂ )′M1(y−Y β̂ ) , σ̃2 =
1
T

ũ′ũ =
1
T

(y−Y β̃ )′M1(y−Y β̃ ) , (3.11)

σ̃2
1 =

1
T

(y−Y β̃ )′N1(y−Y β̃ ) = σ̃2 − σ̃2
e , σ̃2

e =
1
T

(y−Y β̃ )′M(y−Y β̃ ) , (3.12)

σ̃2
2 = σ̂2 − (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) , (3.13)

ΨR =
1
T
{M̄[Ȳ ]− M̄[Z]} , σ̂2

R = y′ΛR y , ΛR =
1
T

M̄[Z] , (3.14)

κ1 = (k2 −G)/G, κ2 = (T −k1 −2G)/G, κ3 = κ4 = T −k1 −G, and κR = (T −k1 −k2 −G)/k2.
Here, û is the vector of OLS residuals from equation (2.1) and σ̂2 is the corresponding OLS-based
estimator of σ2

u (without correction for degrees of freedom), while ũ is the vector of the 2SLS
residuals and σ̃2 the usual 2SLS-based estimator of σ2

u; σ̃2
1, σ̃2

2, σ̃2
e and σ̂2

R may be interpreted as
alternative IV-based scaling factors. Note also that P1 P = PP1 = P1, M1 M = M M1 = M, and

N1 = M1P = PM1 = PM1P = M1PM1 = N1M1 = M1N1 = N1N1

= M1 −M = P−P1 = P̄[X ]− P̄[X1] = P̄[M1X2]. (3.15)
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Each one of the corresponding tests rejects H0 when the statistic is “large”. We also set

V̂ =: MY , Σ̂V =:
1
T

V̂ ′V̂ , (3.16)

i.e. Σ̂V is the usual sample covariance matrix of the LS residuals (V̂ ) from the reduced-form linear
model (2.7).

The tests differ through the use of different “covariance matrix” estimators. H1 uses two dif-
ferent estimators of σ2

u, while the others resort to a single scaling factor (or estimator of σ2
u). We

think the expressions given here for Tl, l = 1, 2, 3, 4, in (3.1) are easier to interpret than those of
Wu (1973), and show more clearly the relation with Hausman-type tests. The statistic H1 can be in-
terpreted as the statistic proposed by Hausman (1978), while H2 and H3 are sometimes interpreted
as variants of H1 [see Staiger and Stock (1997) and Hahn et al. (2010)]. We use the above notations
to better see the relation between Hausman-type tests and Wu-type tests. In particular, Σ̃3 = Σ̂2 and
Σ̃4 = Σ̂3, so T3 = (κ3/T )H2 and T4 = (κ4/T )H3. Further, T4 is a nonlinear monotonic transfor-
mation of T2:

T4 =
κ4 T2

T2 +κ2
=

κ4

(κ2/T2)+1
. (3.17)

Despite these relations, the tests based on T3 and H2 are equivalent only if exact critical values are
used, and similarly for the pairs (T4,H3) and (T2,T4). We are not aware of a simple equivalence
between H1 and Ti, i = 1, 2, 3, 4, and similarly between T1 and H j, j = 1, 2, 3.

The link between the formulation of Wu (1973) and the one above is discussed in Appendix A.2

Condition (2.6) entails that Ω̂IV , Ω̂LS and Σ̂V are (almost surely) nonsingular, which in turn implies
that ∆̂ is invertible; see Lemma A.1 in Appendix. In particular, it is of interest to observe that

∆̂−1 = Ω̂IV + Ω̂IV (Ω̂LS − Ω̂IV )−1Ω̂IV = Ω̂IV + Ω̂IV Σ̂−1
V Ω̂IV = Ω̂LS Σ̂−1

V Ω̂LS − Ω̂LS

=
1
T

Y ′N1
[

IT +Y (Y ′MY )−1Y ′
]

N1Y =
1
T

Y ′M1[Y (Y ′MY )−1Y ′− IT ]M1Y . (3.18)

from which we see easily that ∆̂−1 is positive definite. Further, ∆̂−1 only depends on the least-
squares residuals M1Y and MY from the regressions of Y on X1 and X respectively, and ∆̂−1 can be
bounded as follows:

Ω̂IV ≤ ∆̂−1 ≤ Ω̂LS Σ̂−1
V Ω̂LS (3.19)

so that

(β̃ − β̂ )′ Ω̂IV (β̃ − β̂ ) ≤ (β̃ − β̂ )′ ∆̂−1 (β̃ − β̂ ) ≤ (β̃ − β̂ )′ Ω̂LS Σ̂−1
V Ω̂LS (β̃ − β̂ ) . (3.20)

To the best of our knowledge, the additive expressions in (3.18) are not available elsewhere.
Finite-sample distributional results are available for T1, T2 and R when the disturbances ut are

2When the errors U1, . . . , UT are i.i.d. Gaussian [in which case Assumptions 2.3 and 2.4 hold], the T2 test of Wu
(1973) can also be interpreted as the LM test of a = 0; see Smith (1983) and Engle (1982).
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i.i.d. Gaussian. If u ∼ N[0, σ 2IT ] and X is independent of u, we have:

T1∼F(G, k2 −G) , T2∼F(G, T − k1 −2G) , R∼F(k2, T − k1 − k2 −G) , (3.21)

under the null hypothesis of exogeneity. Furthermore, for large samples, we have under the null
hypothesis (along with standard asymptotic regularity conditions):

Hi
L
→ χ2(G) , i = 1, 2, 3 and Tl

L
→ χ2(G) , l = 3, 4,

when rank(Π2) = G.
Finite-sample distributional results are not available in the literature for Hi, i = 1, 2, 3 and Tl,

l = 3, 4, even when errors are Gaussian and usual full identification assumptions are made. Of
course, the same remark applies when usual conditions for identification fail [rank(Π2) < G] or
get close to do so – e.g., some eigenvalues of Π ′

2Π2 are close to zero (weak identification) – and
disturbances may not be Gaussian. This paper provides a formal characterization of the size and
power of the tests when IVs may be arbitrary weak, with and without Gaussian errors.

3.2. Regression-based formulations of exogeneity statistics

We now show that all the above test statistics can be computed from relatively simple linear regres-
sions, which may be analytically revealing and computationally convenient. We consider again the
regression of u on V in (2.10):

u = Va+ e (3.22)

for some constant vector a ∈ R
G, where e has mean zero and variance σ2

e , and is uncorrelated with
V and X . We can write the structural equation (2.1) in three different ways as follows:

y = Y β +X1γ +V̂ a+ e∗ = Ẑθ + e∗ , (3.23)

y = Ŷ β +X1γ +V̂ b+ e∗ = Z∗θ ∗ + e∗ , (3.24)

y = Y b+X1γ̄ +X2ā+ e = Z̄∗θ̄ + e , (3.25)

where

Ẑ = [Y, X1, V̂ ] , θ = (β ′, γ ′, a ′)′, Z∗ = [Ŷ , X1, V̂ ] , θ ∗ = (β ′, γ ′, b ′)′, Z̄∗ = [Y, X1, X2] , (3.26)

θ̄ = (b ′, γ̄ ′, ā ′)′, b = β +a, γ̄ = γ −Π1 a, ā = −Π2 a , (3.27)

Ŷ = P̄[X ]Y, V̂ = M̄[X ]Y , e∗ = P̄[X ]Va+ e . (3.28)

Clearly, β = b if and only if a = 0. Equations (3.22) - (3.25) show that the endogeneity of Y in
(2.1) - (2.7) can be interpreted as an omitted-variable problem [for further discussion of this view,
see Dufour (1979, 1987) and Doko Tchatoka and Dufour (2014)]. The inclusion of V̂ in equations
(3.23) - (3.24) may also be interpreted as an application of control function methods [see Wooldridge
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(2015)]. We also consider the intermediate regression:

y−Y β̃ = X1γ̄ +X2ā+ e∗∗ = Xθ ∗∗ + e∗∗ (3.29)

where β̃ is the 2SLS estimator of β .

Let θ̂ be the OLS estimator of θ and θ̂ 0
the restricted OLS estimator of θ under the constraint

H0 : a = 0 [in (3.23)], θ̂ ∗ the OLS estimator of θ ∗ and θ̂ 0
∗ the restricted OLS estimate of θ ∗ under

H∗
0 : β = b [in (3.24)], θ̌ the OLS estimate of θ̄ and θ̌ 0

the restricted OLS estimate of θ̄ under
H̄0 : ā = 0[in (3.25)]. Similarly, the OLS estimate of θ ∗∗ based on (3.29) is denoted θ̂ ∗∗, while

θ̂ 0
∗∗ represents the corresponding restricted estimate under H̄0 : ā = 0. The sum of squared error

functions associated with (3.23) - (3.25) are denoted:

S(θ) = ‖y− Ẑθ‖2, S∗(θ ∗) = ‖y−Z∗θ ∗‖
2, S̄(θ̄) = ‖y− Z̄∗θ̄‖2 , (3.30)

S̃(θ ∗∗) = ‖y−Y β̃ −Xθ ∗∗‖
2 . (3.31)

Using Y = Ŷ +V̂ , we see that:

S(θ̂) = S∗(θ̂ ∗) = S̄(θ̌ 0
) , S(θ̂ 0

) = S∗(θ̂
0
∗) = S̃(θ̂ 0

∗∗) , (3.32)

S(θ̂) = T σ̃2
2 , S(θ̂ 0

) = T σ̂2 , S∗(θ̂
0
∗) = T σ̃2 , S̃(θ̂ ∗∗) = T σ̃2

e . (3.33)

We then get the following expressions for the statistics in (3.1) - (3.3):

T1 = κ1

(

S(θ̂ 0
)−S(θ̂)

S∗(θ̂
0
∗)− S̃(θ̂ ∗∗)

)

= κ1

(

S(θ̂ 0
)−S(θ̂)

S̃(θ̂ 0
∗∗)− S̃(θ̂ ∗∗)

)

, (3.34)

T2 = κ2

(

S(θ̂ 0
)−S(θ̂)

S(θ̂)

)

, T3 = κ3

(

S(θ̂ 0
)−S(θ̂)

S∗(θ̂
0
∗)

)

, T4 = κ4

(

S(θ̂ 0
)−S(θ̂)

S(θ̂ 0
)

)

, (3.35)

H2 = T

(

S(θ̂ 0
)−S(θ̂)

S∗(θ̂
0
∗)

)

, H3 = T

(

S(θ̂ 0
)−S(θ̂)

S(θ̂ 0
)

)

, (3.36)

R = κR [S̄(θ̌ 0
)− S̄(θ̌)]/S̄(θ̌) . (3.37)

Details on the derivation of the above formulas are given in Appendix B.
(3.36) - (3.37) provide simple regression formulations of the DWH and RH statistics in terms

of restricted and unrestricted sum of squared errors in linear regressions. However, we did not
find such a simple expression for the Hausman statistic H1. While DWH-type tests consider the
null hypothesis H0 : a = 0, the RH test focuses on the null hypothesis H∗

0 : ā = −Π2 a = 0. If
rank(Π2) = G , we have: a = 0 if and only if ā = 0. However, if rank(Π2) < G, ā = 0 does not
imply a = 0: H0 entails H∗

0 , but the converse does not hold in this case.
The regression interpretation of the T2 and H3 statistics was mentioned earlier in Dufour (1979,

1987) and Nakamura and Nakamura (1981). The R statistic was also derived as a standard regres-
sion test by Revankar and Hartley (1973). To our knowledge, the other regression interpretations
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given here are not available elsewhere.

4. Incomplete models and pivotal properties

In this section, we study the finite-sample null distributions of DWH-type and RH exogeneity tests
under Assumption 2.1, allowing for the possibility of identification failure (or weak identification)
and model incompleteness. The proofs of these results rely on two lemmas of independent interest
(Lemmas C.1 - C.2) given in Appendix.

4.1. Distributions of test statistics under exogeneity

We first show that the exogeneity test statistics in (3.1) - (3.3 ) can be rewritten as follows, irrespec-
tive whether the null hypothesis holds or not.

Proposition 4.1 QUADRATIC-FORM REPRESENTATIONS OF EXOGENEITY STATISTICS. The
exogeneity test statistics in (3.1) - (3.3) can be expressed as follows:

Tl = κ l

(

y′Ψ0 y
y′Λl y

)

, for l = 1, 2, 3, 4, (4.1)

H1 = T (y′Ψ1 [y]y) = T (C1y)′
[

(y′Λ3 y)Ω̂−1
IV − (y′Λ4 y)Ω̂−1

LS

]−1
(C1y) , (4.2)

H2 = T

(

y′Ψ0 y
y′Λ3 y

)

, H3 = T

(

y′Ψ0 y
y′Λ4 y

)

, R = κR

(

y′ΨR y
y′ΛR y

)

, (4.3)

where

Λ1 =
1
T

N1 M̄[N1Y ]N1 , Λ2 = M1

(

1
T

M̄[M1Y ]−Ψ0

)

M1 , (4.4)

Λ3 =
1
T

M1 N′
2N2M1 , Λ4 =

1
T

M̄[Ȳ ] =
1
T

M1M̄[M1Y ]M1 , (4.5)

Ψ1 [y] = C′
1Σ̂−1

1 C1 = C′
1

[

(y′Λ3 y)Ω̂−1
IV − (y′Λ4 y)Ω̂−1

LS

]−1
C1 , (4.6)

and Ψ0 , B2, C1, ΨR and ΛR are defined as in Lemma C.1.

The following theorem characterizes the distributions of all exogeneity statistics under the null
hypothesis of exogeneity (H0 : a = 0).

Theorem 4.2 NULL DISTRIBUTIONS OF EXOGENEITY STATISTICS. Under the model described
by (2.1) - (2.6), suppose Assumption 2.1 holds. If H0 : a = 0 also holds, then the test statistics
defined in (3.1) - (3.3) have the following representations:

Tl = κ l

(

ε ′Ψ0 ε
ε ′Λl ε

)

, for l = 1, 2, 3, 4, (4.7)

H1 = T (ε ′Ψ1 [ε]ε) = T (C1ε)′
[

(ε ′Λ3 ε)Ω̂−1
IV − (ε ′Λ4 ε)Ω̂−1

LS

]−1
(C1ε) , (4.8)
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H2 = T

(

ε ′Ψ0 ε
ε ′Λ3 ε

)

, H3 = T

(

ε ′Ψ0 ε
ε ′Λ4 ε

)

, R = κR

(

ε ′ΨR ε
ε ′ΛR ε

)

, (4.9)

where Ψ0 , Λ1, . . . , Λ4, Ψ1 , ΨR and ΛR are defined as in Proposition 4.1. If Assumption 2.2 also holds,
the distributions of the test statistics T1, T2, T3, T4, H1, H2, H3 and R, conditional on X̄ and Y,
only depend on the conditional distribution of ε given X̄, as specified in Assumption 2.1, and the
values of Y and X.

The last statement of Theorem 4.2 comes from the fact that the weighting matrices defined in
(4.4) - (4.6) only depend on X , Y and ε . Given X and Y, the null distributions of the exogeneity test
statistics only depend on the distribution of ε: provided the distribution of ε | X̄ can be simulated,
exact tests can be obtained through the Monte Carlo test method [see Section 4.2]. Furthermore,
the tests obtained in this way are robust to weak instruments in the sense that the level is controlled
even if identification fails (or is weak). This result holds even if the distribution of ε | X̄ does not
have moments (the Cauchy distribution, for example). This may be useful, for example, in financial
models with fat-tailed error distributions, such as the Student t distribution. There is no further re-
striction on the distribution of ε |X̄ . For example, the distribution of ε |X̄ may depend on X̄ ,provided
it can be simulated.

It is interesting to observe that the distribution of V plays no role here, so the vectors V1, . . . , VT

may follow arbitrary distributions with unspecified heterogeneity (or heteroskedasticity) and serial
dependence. In addition to finite-sample validity of all the exogeneity tests in the presence of
identification failure (or weak identification), Theorem 4.2 entails robustness to incomplete reduced
forms and instrument exclusion under the null hypothesis of exogeneity. No further information is
needed on the form of the reduced form for Y in (2.2): g(·) can be an unspecified nonlinear function,
Π = [Π1 , Π2 ] an unknown parameter matrix, and V may follow an arbitrary distribution. This result
extends to the exogeneity tests the one given in Dufour and Taamouti (2007) on Anderson-Rubin-
type tests (for structural coefficients).

As long as the distribution of ε (given X̄ and Y ) can be simulated, all tests remain valid under
H0, and test sizes are controlled conditional on X̄ and Y , hence also unconditionally. In particular,
Monte-Carlo test procedures remain valid even if the instrument matrix X3 is not used by the test
statistics. A similar property is underscored in Dufour and Taamouti (2007) for Anderson-Rubin
tests in linear structural equation models. This observation is also useful to allow for models with
structural breaks in the reduced form: exogeneity tests remain valid in such contexts without knowl-
edge of the form and timing of breaks. In such contexts, inference on the structural form may be
more reliable than inference on the reduced form, a question of great relevance for macroeconomic
models; see Dufour et al. (2013). However, although the exclusion of instruments does not affect
the null distributions of exogeneity test statistics, it may lead to power losses when the missing
information is important.

4.2. Exact Monte Carlo exogeneity tests

To implement the exact Monte Carlo exogeneity tests of H0 with level α (0 < α < 1), we suggest
the following methodology; for a more general discussion, see Dufour (2006). Suppose that the
conditional distribution of ε (given X̄) is continuous, so that the conditional distribution, given X̄ ,
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of all exogeneity statistics is also continuous. Let W denotes any of the DWH and RH statistic in
(3.1) - (3.3). We can then proceed as follows:

1. choose α∗ and N so that

α =
I[α∗N]+1

N +1
(4.10)

where for any nonnegative real number x, I[x] is the largest integer less than or equal to x;

2. compute the test statistic W (0) based on the observed data;

3. generate N i.i.d. error vectors ε( j) = [ε( j)
1 , . . . , ε( j)

T ]′, j = 1, . . . , N , according to the specified
distribution of ε |X̄ , and compute the corresponding statistics W ( j), j = 1, . . . , N, following
Theorem 4.2; the distribution of each statistic does not depend on β 0 under the null hypothe-
sis;

4. compute the empirical distribution function based on W ( j), j = 1, . . . , N,

F̂N(x) =
∑N

j=11[W ( j) ≤ x]

N +1
(4.11)

or, equivalently, the simulated p-value function

p̂N [x] =
1+∑N

j=11[W ( j) ≥ x]

N +1
(4.12)

where 1[C] = 1 if condition C holds, and 1[C] = 0 otherwise;

5. reject the null hypothesis of exogeneity, H0, at level α when W (0) ≥ F̂−1
N (1−α∗) , where

F̂−1
N (q) = inf{x : F̂N (x) ≥ q} is the generalized inverse of F̂N(·), or (equivalently) when

p̂N [W (0)] ≤ α.

Under H0,
P
[

W
(0) ≥ F̂−1

N (1−α∗)
]

= P
[

p̂N [W (0)] ≤ α
]

= α (4.13)

so that we have a test with level α . The property given by (4.13) is a finite-sample validity result
which holds irrespective of the sample size T , and no asymptotic assumption is required. If the dis-
tributions of the statistics are not continuous, the Monte Carlo test procedure can easily be adapted
by using “tie-breaking” method described in Dufour (2006).3

It is important to note here that the distributions of the exogeneity test statistics in Theorem 4.2

generally depend on the specific “instrument matrix” X used by the tests (especially when ε is not
Gaussian), so no general valid “critical value” (independent of X) is available. The Monte Carlo test
procedure transparently controls the level of the test irrespective of this complication, so there is no
need to compute critical values.

3Without correction for continuity, the algorithm proposed for statistics with continuous distributions yields a con-
servative test, i.e. the probability of rejection under the null hypothesis is not larger than the nominal level (α). Further
discussion of this feature is available in Dufour (2006).
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5. Block-triangular invariance and exogeneity canonical form

In this section, we establish invariance results for exogeneity tests which will be useful to study the
distributions of the test statistics under the alternative hypothesis. This basic invariance property is
given by the following proposition.

Proposition 5.1 BLOCK-TRIANGULAR INVARIANCE OF EXOGENEITY TESTS. Let

R =

[

R11 0
R21 R22

]

(5.1)

be a lower block-triangular matrix such that R11 6= 0 is a scalar and R22 is a nonsingular G×G
matrix. If we replace y and Y by y∗ = yR11 +Y R21 and Y ∗ = Y R22 in (3.1) - (3.14), the statistics Ti

(i = 1, 2, 3, 4), H j ( j = 1, 2, 3) and R do not change.

The above result is purely algebraic, so no statistical assumption is needed. However, when it is
combined with our statistical model, it has remarkable consequences on the properties of exogeneity
tests. For example, if the reduced-form errors V1, . . . , VT for Y have the same nonsingular covariance
matrix Σ , the latter can be eliminated from the distribution of the test statistic by choosing R22 so
that R′

22 Σ R22 = IG. This entails that the distributions of the exogeneity statistics do not depend on
Σ under both the null and the alternative hypotheses.

Consider now the following transformation matrix:

R =

[

1 0
−(β +a) IG

]

. (5.2)

Then, we have [y∗, Y ∗] = [y, Y ]R with

y∗ = y−Y (β +a) = Y β +X1γ +Va+ e−Y (β +a) = µy∗(a)+ e , (5.3)

Y ∗ = Y (5.4)

where µy∗(a) is a T ×1 vector such that

µy∗(a) = X1γ +[V −g(X1, X2, X3, V, Π̄)]a . (5.5)

The (invertible) transformation (5.3) - (5.4) yields the following “latent reduced-form” represen-
tation:

y∗ = X1γ +[V −g(X1, X2, X3, V, Π̄)]a+ e , (5.6)

Y = g(X1, X2, X3, V, Π̄) . (5.7)

We say “latent” because the function g(·) and the variables X3 are unknown or unspecified. An
important feature here is that the endogeneity parameter a can be isolated from other model param-
eters. This will allow us to get relatively simple characterizations of the power of exogeneity tests.
For this reason, we will call (5.6) - (5.7), the “exogeneity canonical form” associated with model
(2.1) - (2.2) along with Assumption 2.1.
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In the important case where reduced-form error linear separability holds (Assumption 2.6) in
addition to (2.1) - (2.2), we can write

Y = g(X1, X2, X3, Π̄)+V = µY +V (5.8)

which, by (2.1), entails
y = µy(a)+(u+Vβ ) = µy(a)+ v (5.9)

where µY is a T ×G matrix and µy is a T ×1 vector, such that

µY = g(X1, X2, X3, Π̄) , µy(a) = g(X1, X2, X3, Π̄)β +X1γ , (5.10)

v = u+V β = e+V (β +a) . (5.11)

Then
µy∗(a) = µy(a)−µY (β +a) = X1γ −g(X1, X2, X3, Π̄)a (5.12)

does not depend on V , and the exogeneity canonical form is:

y∗ = X1γ −g(X1, X2, X3, Π̄)a+ e , (5.13)

Y = g(X1, X2, X3, Π̄)+V . (5.14)

6. Power

In this section, we provide characterizations of the power of exogeneity tests. We first consider the
general case where only Assumption 2.1 is added to the basic setup (2.1) - (2.6). To simplify the
exposition, we use the following notation: for any T ×1 vector x and T ×T matrix A, we set

ST [x, A] = T x′Ax . (6.1)

Theorem 6.1 EXOGENEITY TEST DISTRIBUTIONS UNDER THE ALTERNATIVE HYPOTHESIS.
Under the model described by (2.1) - (2.6), suppose Assumption 2.1 holds. Then the test statistics
defined in (3.1) - (3.3) have the following representations:

Tl = κ l

(

ST [u(ā),Ψ0 ]

ST [u(ā), Λl]

)

, for l = 1, 2, 3, 4, (6.2)

H1 = T {u(ā )′Ψ1 [u(ā )]u(ā )} , H2 = T

(

ST [u(ā ), Ψ0 ]

ST [u(ā ), Λ3]

)

, H3 = T

(

ST [u(ā ),Ψ0 ]

ST [u(ā ), Λ4]

)

, (6.3)

R = κR

(

ST [u(ā ),ΨR ]

ST [u(ā ), ΛR ]

)

, (6.4)

where u(ā ) = V ā+ ε , ā = σ(X̄)−1a,

Ψ1 [u(ā )] = C′
1

(

ST [u(ā ), Λ3]Ω̂−1
IV −ST [u(ā ), Λ4]Ω̂−1

LS

)−1
C1 (6.5)
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and C1, Ψ0 , Ψ1 , ΨR, ΛR , Λ1, . . . , Λ4 are defined as in Theorem 4.2. If Assumption 2.5 also holds, the
distributions of the test statistics (conditional on X̄) depend on a only through ā in u(ā ).

By Theorem 6.1, the distributions of all the exogeneity statistics depend on a, though possibly
in a rather complex way (especially when disturbances follow non-Gaussian distributions). If the
distribution of ε does not depend on ā – as would be typically the case – power depends on the way
the distributions of the quadratic forms ST [u(ā ), Ψi ] and ST [u(ā ), Λ j] in (6.2) - (6.4) are modified
when the value of ā changes. Both the numerator and the denominator of the statistics in Theorem
6.1 may follow different distributions, in contrast to what happens in standard F tests in the classical
linear model.

The power characterization given by Theorem 6.1 does not provide a clear picture of the param-
eters which determine the power of exogeneity tests. This can be done by exploiting the invariance
result of Proposition 5.1, as follows.

Theorem 6.2 INVARIANCE-BASED DISTRIBUTIONS OF EXOGENEITY STATISTICS. Under the
model described by (2.1) - (2.6), suppose Assumption 2.1 holds. Then the test statistics defined in
(3.1) - (3.3) have the following representations:

Tl = κ l

(

ST [y⊥∗ (ā ),Ψ0 ]

ST [y⊥∗ (ā ), Λl]

)

, for l = 1, 2, 3, 4, (6.6)

H1 = ST
[

y⊥∗ (ā ),Ψ1 [y
⊥
∗ (ā )]

]

, H2 = T

(

ST [y⊥∗ (ā ),Ψ0 ]

ST [y⊥∗ (ā ), Λ3]

)

, (6.7)

H3 = T

(

ST [y⊥∗ (ā ),Ψ0 ]

ST [y⊥∗ (ā ), Λ4]

)

, R = κR

(

ST [y⊥∗ (ā ),ΨR ]

ST [y⊥∗ (ā ), ΛR]

)

, (6.8)

where
y⊥∗ (ā ) = µ̄⊥

y∗(ā )+M1ε, (6.9)

µ̄⊥
y∗(ā ) = M1[V −g(X1, X2, X3, V, Π̄)]ā , ā = σ(X̄)−1a , (6.10)

Ψ1 [y
⊥
∗ (ā )] = C′

1

(

ST [y⊥∗ (ā ), Λ3]Ω̂−1
IV −ST [y⊥∗ (ā ), Λ4]Ω̂−1

LS

)−1
C1 , (6.11)

and C1, Ψ0 , Ψ1 , ΨR, ΛR , Λ1, . . . , Λ4 are defined as in Theorem 4.2. If Assumption 2.5 also holds,
the distributions of the test statistics (conditional on X̄ and V ) depend on a only through µ̄⊥

y∗(ā ) in
y⊥∗ (ā ). If Assumption 2.6 also holds,

µ̄⊥
y∗(ā ) = −M1 g(X1, X2, X3, Π̄) ā . (6.12)

Following Theorem 6.2, the powers of the different exogeneity tests are controlled by µ̄⊥
y∗(ā )

in (6.10). Clearly a = 0 entails µ̄⊥
y∗(ā ) = 0, which corresponds to the distribution under the null

hypothesis [under Assumption 2.5]. Note however, the latter property also holds when

M1 [V −g(X1, X2, X3, V, Π̄)] = 0 (6.13)
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even if a 6= 0.
Under Assumption 2.6, V is evacuated from µ̄⊥

y∗(ā ) as given by (6.12). If Assumptions 2.5 and
2.6 hold, power is determined by this parameter. µ̄⊥

y∗(ā ) = 0 when a = 0, but also when X1 and
g(X1, X2, X3, Π̄) are orthogonal. Note also the norm of µ̄⊥

y∗(ā ) shrinks when σ(X̄) increases, so
power decreases when the variance of value of ε t increases (as expected). Under Assumption 2.6,
conditioning on X̄ and V also becomes equivalent to conditioning on X̄ and Y .

Consider the special case of a complete linear model where equations (2.7) and (2.8) hold. We
then have:

g(X1, X2, X3, Π̄) = X1Π1 +X2Π2 , µ⊥
y∗1(ā) = −M1X2Π2 ā . (6.14)

When Π2 = 0 (complete non-identification of model parameters), or M1X2 = 0 (X2 perfectly
collinear with X1), or more generally when M1X2Π2 = 0, we have µ̄⊥

y∗(ā ) = 0. Then, under As-
sumption 2.5, the distributions of the exogeneity test statistics do not depend on a, and the power
function is flat (with respect to a).

Theorem 6.2 provides a conditional power characterization [given X̄ and V (or Y )]. Even though
the level of the test does not depend on the distribution of V , power typically depends on the distri-
bution of V . Unconditional power functions can be obtained by averaging over V , but this requires
formulating specific assumptions on the distribution of V .

When the disturbances ε1, . . . , εT are i.i.d. Gaussian, it is possible to express the power function
in terms of non-central chi-square distributions. We denote by χ2[n; δ ] the non-central chi-square
distribution with n degrees of freedom and noncentrality parameter δ , and by F [n1, n2; δ 1, δ 2] the
doubly noncentral F-distribution with degrees of freedom (n1, n2) and noncentrality parameters
(δ 1, δ 2), i.e. F ∼ F [n1, n2; δ 1, δ 2] means that F can be written as F = [Q1/m1]/ [Q2/m2] where
Q1 and Q2 are two independent random variables such that Q1 ∼ χ2[n1; δ 1] and Q2 ∼ χ2[n2; δ 2];
see Johnson, Kotz and Balakrishnan (1995, Ch. 30). When δ 2 = 0, F ∼ F [n1, n2; δ 1] the usual
noncentral F-distribution.

Theorem 6.3 INVARIANCE-BASED DISTRIBUTIONS OF EXOGENEITY STATISTICS COMPO-
NENTS WITH GAUSSIAN ERRORS. Under the model described by (2.1) - (2.6), suppose As-
sumptions 2.1 and 2.2 hold. If ε ∼ N[0, IT ], then, conditional on X̄ and V , we have:

ST [y⊥∗ (ā ),Ψ0 ] ∼ χ2[G; δ (ā, Ψ0)] , ST [y⊥∗ (ā ), Λ1] ∼ χ2[k2 −G ; δ (ā, Λ1)] , (6.15)

ST [y⊥∗ (ā ), Λ2]∼ χ2[T −k1−2G ; δ (ā, Λ2)] , ST [y⊥∗ (ā ), Λ4]∼ χ2[T −k1−G ; δ (ā, Λ4)] , (6.16)

ST [y⊥∗ (ā ), ΨR] ∼ χ2[k2 ; δ (ā, ΨR)] , ST [y⊥∗ (ā ), ΛR ] ∼ χ2[T − k1 − k2 −G ; δ (ā, ΛR)] , (6.17)

where
δ (ā, Ψ0) = ST [µ̄⊥

y∗(ā ),Ψ0] , δ (ā, Λ1) = ST [µ̄⊥
y∗(ā ), Λ1] , (6.18)

δ (ā, Λ2) = ST [µ̄⊥
y∗(ā ), Λ2] , δ (ā, Λ4) = ST [µ̄⊥

y∗(ā ), Λ4] , (6.19)

δ (ā, ΨR) = ST [µ̄⊥
y∗(ā ), ΨR] , δ (ā, ΛR) = ST [µ̄⊥

y∗(ā ), ΛR ] , (6.20)

and the other symbols are defined as in Theorem 6.2. Further, conditional on X̄ and V , the random
variable ST [y⊥∗ (ā ),Ψ0 ] is independent of ST [y⊥∗ (ā ), Λ1] and ST [y⊥∗ (ā ), Λ2], and ST [y⊥∗ (ā ),ΨR] is
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independent of ST [y⊥∗ (ā ), ΛR ].

Note we do not have a chi-square distributional result for ST [y⊥∗ (ā ), Λ3] which depends on the
usual 2SLS residuals. On the other hand, ST [y⊥∗ (ā ), Λ4] follows a noncentral chi-square distribution,
but it is not independent of ST [y⊥∗ (ā ),Ψ0 ].

The noncentrality parameters in Theorem 6.3 can be interpreted as concentration parameters.
For example,

δ (ā, Ψ0) = T [µ̄⊥
y∗(ā )′Ψ0 µ̄⊥

y∗(ā )] = T [µ̄⊥
y∗(ā )′C′

1∆̂−1C1µ̄⊥
y∗(ā )]

= {M1[V −g(X1, X2, X3, V, Π̄)]ā}′C′
1(C1C′

1)
−1C1{M1[V −g(X1, X2, X3, V, Π̄)]ā}

= {M1[V −g(X1, X2, X3, V, Π̄)]ā}′P̄[C′
1]{M1[V −g(X1, X2, X3, V, Π̄)]ā} (6.21)

and, in the case of the simple complete linear model where (2.7) and (2.8) hold,

δ (ā, Ψ0) = (M1 X2 Π2 ā)′P̄[C′
1](M1 X2 Π2 ā) = ā ′Π ′

2 X ′
2 M1P̄[C′

1]M1 X2 Π2 ā . (6.22)

For δ (ā, Ψ0) to be different from zero, we need M1X2Π2 ā 6= 0. In particular, this requires that the
instruments X2 not be totally weak (Π2 6= 0) and linearly independent of X1 (M1X2 6= 0). Similar in-
terpretations can easily be formulated for the other centrality parameters. In particular, in the simple
complete linear model, all noncentrality parameters are zero if M1 X2 Π2 ā = 0. Note, however, this
may not hold in the more general model described by (2.1) -(2.6), because of the nonlinear reduced
form for Y and the presence of excluded instruments.

Theorem 6.3 allows us to conclude that T1, T2 and R follow doubly noncentral F-distributions
under the alternative hypothesis (conditional on X̄ and V ). This is spelled out in the following
corollary.

Corollary 6.4 DOUBLY NONCENTRAL DISTRIBUTIONS FOR EXOGENEITY STATISTICS. Under
the model described by (2.1) - (2.6), suppose Assumptions 2.1 and 2.2 hold. If ε ∼ N[0, IT ], then
conditional on X̄ and V , we have:

T1 ∼ F [G, k2 −G; δ (ā, Ψ0), δ (ā, Λ1)] , (6.23)

T2 ∼ F [G, T − k1 −2G; δ (ā, Ψ0), δ (ā, Λ2)] , (6.24)

T4 =
κ4

κ2T
−1

2 +1
≤

(

κ4

κ2

)

T2 , (6.25)

R ∼ F [k2, T − k1 − k2 −G; δ (ā, ΨR), δ (ā, ΨR)] , (6.26)

where the noncentrality parameters are defined in Theorem 6.3.

In the special case where (2.7) and (2.8) hold, we have ΛR M1 g(X1, X2, X3, Π̄) =
ΛRg(X1, X2, X3, Π̄) = 0 and δ (ā, ΨR) = 0, so R ∼ F [k2, T − k1 − k2 −G; δ (ā, ΨR)] the usual non-
central noncentral F-distribution. When a = 0, the distributions of T1, T2 and R reduce to the
central chi-square in (3.21) originally provided by Wu (1973) and Revankar and Hartley (1973).
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The setup under which these are obtained here is considerably more general than the usual linear
reduced-form specification (2.7) considered by these authors.

Note T4 is proportional to a ratio of two noncentral chi-square distributions, but it is not doubly-
noncentral chi-square due to the non-orthogonality of Ψ0 and Λ4 [Ψ0 Λ4 = T−1Ψ0 , see (C.50)]. This
observation carries to H3 through the identity H3 = (T/κ4)T4. The same applies to H1 and H2,
because of the presence of ST [y⊥∗ (ā ), Λ3] in these statistics.

7. Simulation experiment

We use simulation to analyze the finite-sample performances (size and power) of the standard and
exact Monte Carlo DWH and RH tests. The DGP is described by equations (2.1) and (2.7) without
included exogenous instruments variables X1, Y = [Y1 : Y2] ∈ R

T×2, the T × k2 instrument matrix

X2 is a such that X2t
i.i.d.
∼ N(0, Ik2) for all t = 1, . . . , T, and is fixed within experiment. We set the

true values of β at β 0 = (2,5)′ but the results are qualitatively the same for alternative choices
of β 0. The matrix Π2 that describes the quality of the instruments in the first stage regression is
such that Π2 = [η1Π01 : η2Π02] ∈ R

k2×2, where [Π01 : Π02] is obtained by taking the first two
columns of the identity4 matrix of order k2. We vary both η1 and η2 in {0, 0.01, 0.5}, where
η1 = η2 = 0 is a design of a complete non-identification, η1 = η2 = 0.01 is a design of weak
identification, η1 ∈ {0, 0.01}andη2 = 0.5 or vice versa is a design of partial identification, and
finally, η1 = η2 = 0.5 corresponding to strong identification (strong instruments).

The errors u and V are generated so that

u = Va+ e = V1a1 +V2a2 + e (7.1)

where a1 and a2 are fixed scalar coefficients. In this experiment, we set a = (a1,a2)
′ = λ a0, where

a0 = (0.5,0.2)′ and λ ∈ {−20−5,0,1,100} but the results do not change qualitatively with alter-
native values of a0 and λ . In the above setup, λ controls the endogeneity of Y : λ = 0 corresponds
to the exogeneity hypothesis (level), while values of λ different from zero represent the alterna-
tive of endogeneity (power). We consider two specifications for the joint distribution of [e,V ]. In
the first one, (et ,V ′

t )
′ ∼ N(0, I3) for all t = 1, . . . , T (Gaussian errors). In the second one, et and

Vjt , j = 1,2, follow a t(3) distribution and are uncorrelated for all t = 1, . . . , T. In both cases, V1

and V2 are independent. The sample size is T = 50, and the Monte Carlo test p-values are computed
with N = 199 pseudo-samples. The simulations are based on 10000 replications. The nominal level
for both the MC critical values and the standard tests is set at 5%.

7.1. Size and power with the usual critical values

Tables 1-2 present the empirical rejections of the standard DWH and RH tests for both Gaussian
errors (Table 1) and t(3) errors (Table 2). The first column of each table reports the statistics, while
the second column contains the values of k2 (number of excluded instruments). The other columns

4We run the experiment where [Π01 : Π02] is the k2×2 matrix of ones, and we found similar results as those presented
here.
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report, for each value of the endogeneity measure (λ ) and IV qualities η1 and η2, the rejection
frequencies of the tests. The results confirm our theoretical analysis.

First, the rejection frequencies of all tests under the null hypothesis of exogeneity (λ = 0) are
equal or smaller than the nominal 5% level, whether identification is weak (η1,η2 ∈ {0, 0.01}),
partial (η1 ∈ {0, 0.01}andη2 = 0.5 or vice versa), or strong (η1 = η2 = 0.5), with or without
Gaussian errors. Thus, all DWH-type and RH tests are valid in finite samples and robust to weak
instruments (i.e., level is controlled). This confirms the analysis of Section 4. As expected, the tests
T2, T4, H3, and R have rejections close to the 5% nominal level. Meanwhile, T3, H1 and H2 are
highly conservative when identification is weak [η1,η2 ∈ {0, 0.01} in the tables].

Second, all tests have power when identification is partial (columns λ 6= 0 and η1 ∈
{0, 0.01}andη2 = 0.5 or vice versa) or strong (columns λ 6= 0 and η1 = η2 = 0.5), with and
without Gaussian errors. Their rejection frequencies are close to 100% when λ 6= 0 and identifica-
tion is strong (η1 = η2 = 0.5), despite the relatively small sample size (T = 50). However, all tests
have low power when all instruments are irrelevant (λ 6= 0 and η1,η2 ∈ {0, 0.01}). In particular,
the rejection frequencies are close to 5% when λ 6= 0,with η1,η2 ∈ {0, 0.01}, thus confirming the
results of Theorems 6.2 and 6.3. The simulations also suggest that the tests T2, H3, T4, and R

have greater power than the others. However, this is not also always the case after size correction
through the exact Monte Carlo test method, as shown in the next subsection.

7.2. Performance of the exact Monte Carlo tests

We now examine the performance of the proposed exact Monte Carlo exogeneity tests. Tables 3 - 4
present the results for Gaussian errors (Table 3) and t(3) errors (Table 4). The results confirm our
theoretical findings.

First, the rejection frequencies under the null hypothesis of exogeneity (λ = 0) of all Monte
Carlo tests are around 5% whether identification is weak (η1,η2 ∈ {0, 0.01}), partial (η1 ∈
{0, 0.01}andη2 = 0.5 or vice versa), or strong (η1 = η2 = 0.5), with or without Gaussian er-
rors. This represents a substantial improvement for the standard T3, H2 and Hausman (1978) H1

statistics.
Second, when λ 6= 0 (endogeneity), the rejection frequencies of all tests improve in most cases.

This is especially the case for T3, H1 and H2. For example, with Gaussian errors and k2 = 5
instruments, the rejection frequencies of T3, H1 and H2 have increased from 34.1%, 20.9% and
36.8% (for the standard tests) to 60.7%, 56.5% and 60.7% (for the exact Monte Carlo tests); see
the columns for λ = 1 (η1 = 0.5 and η2 = 0) in Tables 1 and 3. The results are more remarkable
with t(3) errors and k2 = 5 instruments. In this case, the rejection frequencies of the exact Monte
Carlo T3, H1 and H2 tests have tripled those of their standard versions; see λ = 1 (η1 = 0.5 and
η2 = 0) in Tables 2 and 4. The results are essentially the same for other values of k2, λ and IV
strength (η1 and η2). Moreover, except for T1, the other exact Monte Carlo tests exhibit power
with or without Gaussian errors, including when identification is very weak (η1 = 0.01, η2 = 0)
and endogeneity is large (λ = 100 for example). Note that the standard exogeneity tests (including
T2 and R) perform poorly in this case. Thus, size correction through the exact Monte Carlo test
method yields a substantial improvement for the exogeneity tests considered. In addition, observe
that after size correction, even the Hausman (1978) statistic (H1) becomes attractive in terms of
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Table 1. Size and power of exogeneity tests with Gaussian errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0

T1 5 5.0 4.8 74.2 5.3 4.8 67.7 4.7 5.0 5.1 5.1 4.8 21.1 5.3 4.4 74.1
T2 - 4.6 12.4 100.0 5.1 5.7 100.0 4.7 5.2 4.9 5.0 4.9 57.7 5.1 69.8 100.0
T3 - 0.0 0.0 98.4 0.0 0.0 97.8 0.0 0.0 0.7 0.0 0.0 34.1 0.0 3.6 98.4
T4 - 4.3 11.8 100.0 4.7 5.2 100.0 4.5 4.9 4.6 4.7 4.5 56.4 4.8 69.2 100.0
H1 - 0.0 0.0 92.4 0.0 0.0 90.6 0.0 0.0 0.3 0.0 0.0 20.9 0.0 2.1 92.1
H2 - 0.0 0.0 98.5 0.0 0.0 98.0 0.0 0.0 0.8 0.0 0.1 36.8 0.0 4.5 98.5
H3 - 5.0 12.9 100.0 5.4 6.0 100.0 5.0 5.5 5.2 5.3 5.2 58.7 5.5 70.4 100.0
R - 5.2 18.6 100.0 5.1 5.8 100.0 4.6 4.7 4.8 5.3 5.1 44.8 5.2 100.0 100.0

T1 10 4.9 3.9 99.5 5.0 4.7 98.1 4.7 5.1 4.7 5.2 5.2 37.9 4.7 3.1 99.4
T2 - 4.8 9.7 100.0 5.0 5.1 100.0 4.8 4.8 5.1 5.1 5.2 59.1 4.8 44.6 100.0
T3 - 0.3 0.7 100.0 0.4 0.2 100.0 0.3 0.3 1.8 0.3 0.4 48.8 0.3 10.7 100.0
T4 - 4.5 9.2 100.0 4.6 4.8 100.0 4.5 4.6 4.8 4.8 4.9 57.8 4.5 43.8 100.0
H1 - 0.2 0.4 99.1 0.2 0.1 98.5 0.2 0.1 0.8 0.1 0.1 32.1 0.1 7.1 99.2
H2 - 0.4 0.9 100.0 0.6 0.3 100.0 0.5 0.4 2.2 0.4 0.5 51.4 0.4 12.7 100.0
H3 - 5.0 10.1 100.0 5.3 5.5 100.0 5.1 5.1 5.5 5.4 5.5 60.0 5.1 45.6 100.0
R - 5.1 21.5 100.0 4.8 5.6 100.0 5.4 4.9 5.6 5.3 5.2 37.8 5.0 100.0 100.0

T1 20 5.2 3.4 99.9 5.3 5.1 99.4 4.7 4.7 5.1 4.9 5.0 41.7 4.7 1.5 99.9
T2 - 5.0 7.0 100.0 5.2 5.2 100.0 4.9 4.6 5.1 5.1 5.0 51.9 5.1 14.5 100.0
T3 - 1.8 2.8 100.0 1.9 2.1 100.0 2.1 1.7 3.3 2.0 2.0 47.8 2.0 7.4 100.0
T4 - 4.6 6.7 100.0 4.9 4.9 100.0 4.5 4.3 4.7 4.8 4.6 50.7 4.7 13.9 100.0
H1 - 1.1 1.7 99.7 1.2 1.2 99.4 1.4 1.0 1.2 1.1 1.2 30.6 1.2 5.0 99.8
H2 - 2.3 3.4 100.0 2.4 2.6 100.0 2.5 2.2 3.9 2.5 2.6 50.3 2.4 8.5 100.0
H3 - 5.3 7.4 100.0 5.6 5.4 100.0 5.2 5.0 5.3 5.4 5.2 53.0 5.5 15.0 100.0
R - 4.7 29.4 100.0 5.0 6.0 100.0 5.0 5.0 5.4 4.7 5.4 25.7 5.1 100.0 100.0
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Table 1 (continued). Size and power of exogeneity tests with Gaussian errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 63.4 64.1 78.2 37.6 39.8 72.5 4.7 4.9 5.2 7.1 7.7 23.2 66.7 66.0 78.3
T2 - 100.0 100.0 100.0 96.8 98.1 100.0 4.9 5.3 4.9 11.6 12.3 61.4 100.0 100.0 100.0
T3 - 97.3 97.0 98.4 81.7 84.0 98.1 0.6 0.7 1.1 3.1 3.1 39.1 97.2 97.8 98.6
T4 - 100.0 100.0 100.0 96.5 97.9 100.0 4.5 4.9 4.7 11.0 11.7 60.2 100.0 100.0 100.0
H1 - 90.7 91.2 91.4 66.5 69.4 89.6 0.3 0.4 0.4 1.7 1.6 23.4 91.4 92.3 91.9
H2 - 97.5 97.2 98.5 83.6 85.6 98.2 0.7 0.9 1.2 3.6 3.8 41.4 97.4 98.0 98.7
H3 - 100.0 100.0 100.0 97.1 98.2 100.0 5.2 5.6 5.3 12.2 12.8 62.5 100.0 100.0 100.0
R - 100.0 100.0 100.0 94.7 96.5 100.0 5.0 5.3 5.4 9.3 9.5 48.4 100.0 100.0 100.0

T1 10 98.8 98.9 99.7 79.4 81.4 99.0 4.8 5.3 5.4 10.3 11.2 43.3 99.4 99.2 99.8
T2 - 100.0 100.0 100.0 98.6 99.1 100.0 5.1 5.3 5.0 13.1 14.4 65.6 100.0 100.0 100.0
T3 - 100.0 100.0 100.0 97.3 98.1 100.0 1.7 1.7 1.8 7.1 8.3 57.4 100.0 100.0 100.0
T4 - 100.0 100.0 100.0 98.4 99.0 100.0 4.7 5.0 4.7 12.6 13.6 64.5 100.0 100.0 100.0
H1 - 99.2 99.0 98.1 87.5 90.6 97.2 0.7 0.5 0.4 3.3 3.9 33.0 99.1 99.1 98.4
H2 - 100.0 100.0 100.0 97.7 98.4 100.0 2.1 2.0 2.2 8.1 9.5 59.9 100.0 100.0 100.0
H3 - 100.0 100.0 100.0 98.6 99.2 100.0 5.5 5.6 5.3 13.9 15.1 66.5 100.0 100.0 100.0
R - 100.0 100.0 100.0 95.5 97.1 100.0 5.1 5.1 5.1 8.4 9.4 42.8 100.0 100.0 100.0

T1 20 99.8 99.7 100.0 84.0 85.8 99.5 5.3 5.2 4.9 10.9 11.7 43.2 99.9 99.9 100.0
T2 - 100.0 100.0 100.0 95.3 96.5 100.0 5.1 5.0 5.1 12.1 12.8 54.6 100.0 100.0 100.0
T3 - 100.0 100.0 100.0 94.5 95.7 100.0 3.4 3.1 3.3 9.2 10.0 50.4 100.0 100.0 100.0
T4 - 100.0 100.0 100.0 95.0 96.2 100.0 4.9 4.6 4.7 11.5 12.2 53.3 100.0 100.0 100.0
H1 - 99.7 99.7 98.9 85.2 87.2 97.7 1.1 1.2 0.8 4.2 4.4 26.9 99.8 99.8 99.0
H2 - 100.0 100.0 100.0 95.2 96.4 100.0 4.0 3.7 3.8 10.5 11.3 53.2 100.0 100.0 100.0
H3 - 100.0 100.0 100.0 95.6 96.7 100.0 5.3 5.4 5.5 12.6 13.4 55.6 100.0 100.0 100.0
R - 100.0 100.0 100.0 86.9 90.2 100.0 5.1 5.3 4.9 7.5 7.3 27.4 100.0 100.0 100.0
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Table 2. Size and Power of exogeneity tests with t(3) errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0

T1 5 4.6 5.0 50.5 5.3 5.2 43.9 5.3 4.9 5.0 4.9 4.9 12.9 5.0 4.4 50.7
T2 - 4.8 7.8 99.9 4.9 5.2 99.5 5.2 5.0 4.8 5.1 5.2 33.7 5.1 52.6 99.9
T3 - 0.0 0.0 91.2 0.0 0.0 87.6 0.0 0.0 0.4 0.0 0.0 10.6 0.0 1.5 91.2
T4 - 4.5 7.3 99.9 4.6 4.9 99.4 4.9 4.7 4.5 4.7 4.9 32.6 4.7 51.7 99.9
H1 - 0.0 0.0 85.3 0.0 0.0 79.4 0.0 0.0 0.2 0.0 0.0 6.4 0.0 0.8 84.8
H2 - 0.0 0.0 91.9 0.0 0.0 88.6 0.0 0.0 0.6 0.0 0.0 12.3 0.0 1.8 91.9
H3 - 5.1 8.1 99.9 5.3 5.6 99.5 5.5 5.3 5.1 5.4 5.5 35.0 5.5 53.2 99.9
R - 4.9 9.8 100.0 5.0 5.4 99.6 5.0 5.2 4.9 5.3 5.6 27.8 5.2 92.0 100.0

T1 10 5.1 4.6 86.0 5.0 4.7 78.6 4.9 4.9 4.6 4.9 5.0 21.1 5.2 3.2 87.2
T2 - 5.1 6.2 99.8 5.3 5.0 99.2 4.9 5.1 5.2 5.0 4.6 34.2 5.0 29.4 99.8
T3 - 0.4 0.4 99.0 0.3 0.4 97.7 0.3 0.3 1.2 0.3 0.2 20.5 0.2 4.4 99.2
T4 - 4.8 5.7 99.8 5.0 4.7 99.2 4.5 4.7 4.8 4.6 4.4 33.2 4.6 28.4 99.8
H1 - 0.1 0.1 97.9 0.1 0.2 95.5 0.1 0.1 0.6 0.1 0.1 13.3 0.1 2.5 98.1
H2 - 0.5 0.5 99.2 0.4 0.5 98.0 0.4 0.4 1.5 0.4 0.3 22.6 0.4 5.4 99.3
H3 - 5.4 6.6 99.9 5.6 5.3 99.2 5.1 5.4 5.4 5.3 4.9 35.1 5.2 30.2 99.8
R - 4.9 9.4 100.0 5.4 5.2 99.6 5.1 5.1 4.9 5.2 5.1 23.7 5.2 93.2 100.0

T1 20 4.8 4.4 97.9 4.6 4.6 94.6 5.1 4.9 5.4 4.9 4.9 29.8 4.9 1.6 98.4
T2 - 4.9 5.8 99.8 4.7 4.6 99.4 5.2 5.1 5.5 4.8 4.8 38.8 4.6 12.2 99.9
T3 - 1.8 2.3 99.8 1.7 1.9 99.3 2.1 2.0 3.3 1.7 1.9 33.5 1.7 5.7 99.8
T4 - 4.5 5.4 99.8 4.5 4.2 99.4 4.9 4.9 5.1 4.5 4.5 37.6 4.3 11.5 99.9
H1 - 1.1 1.4 99.6 0.9 1.0 98.5 1.2 1.1 1.6 1.0 1.1 24.5 1.0 3.7 99.7
H2 - 2.3 2.8 99.8 2.1 2.2 99.4 2.5 2.4 3.8 2.1 2.3 35.9 2.2 6.7 99.8
H3 - 5.2 6.2 99.9 5.1 4.7 99.4 5.5 5.5 5.7 5.1 5.1 39.6 4.8 12.6 99.9
R - 5.2 11.8 100.0 4.9 5.4 99.4 5.1 4.7 4.7 5.0 4.9 23.0 4.4 98.0 100.0
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Table 2 (continued). Size and Power of exogeneity tests with t(3) errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 47.0 47.6 67.0 26.4 27.2 59.0 4.5 4.8 5.4 6.6 7.1 18.3 50.6 49.9 68.3
T2 - 99.7 99.8 100.0 83.3 86.2 99.8 4.6 4.9 4.9 8.9 10.1 48.9 99.9 99.8 100.0
T3 - 89.8 89.9 97.1 51.0 54.9 95.9 0.5 0.4 0.7 1.4 1.6 26.1 91.1 91.3 97.7
T4 - 99.7 99.8 100.0 82.5 85.7 99.8 4.3 4.5 4.6 8.3 9.5 48.0 99.9 99.8 100.0
H1 - 82.6 83.4 91.7 38.5 42.5 88.2 0.3 0.2 0.3 0.7 0.8 16.0 84.6 85.3 91.9
H2 - 90.8 90.8 97.3 54.1 57.7 96.3 0.6 0.5 0.8 1.7 1.8 28.3 91.8 92.1 97.9
H3 - 99.7 99.8 100.0 83.8 86.7 99.8 4.8 5.1 5.2 9.3 10.7 50.0 99.9 99.8 100.0
R - 99.9 100.0 100.0 79.7 84.1 99.8 5.3 4.7 5.0 7.7 7.9 38.7 100.0 100.0 100.0

T1 10 90.5 90.1 98.5 57.3 59.2 95.7 5.3 4.9 5.1 8.7 9.2 34.1 92.2 92.4 98.8
T2 - 99.8 99.8 100.0 87.7 90.0 99.9 5.3 5.1 5.0 10.5 11.5 53.9 99.9 99.9 100.0
T3 - 99.5 99.4 100.0 80.5 83.5 99.8 1.4 1.4 1.6 4.6 4.9 43.1 99.5 99.6 100.0
T4 - 99.8 99.8 100.0 87.2 89.7 99.9 4.9 4.8 4.6 10.0 10.9 52.7 99.9 99.9 100.0
H1 - 98.4 98.5 99.1 70.3 73.8 98.0 0.7 0.5 0.7 2.4 2.7 29.8 98.9 98.8 99.3
H2 - 99.5 99.5 100.0 82.3 85.2 99.8 1.9 1.6 1.9 5.3 5.6 45.6 99.6 99.6 100.0
H3 - 99.8 99.9 100.0 88.2 90.5 99.9 5.7 5.4 5.5 11.0 11.9 54.8 99.9 99.9 100.0
R - 99.9 99.9 100.0 81.6 85.0 99.8 5.1 5.1 4.8 7.8 8.1 36.5 100.0 100.0 100.0

T1 20 96.8 96.7 99.8 66.6 68.4 98.1 4.8 4.7 5.2 9.3 9.2 36.8 98.0 97.7 99.8
T2 - 99.8 99.7 100.0 83.5 84.5 99.7 4.8 5.0 5.2 10.2 10.2 46.4 99.8 99.8 100.0
T3 - 99.7 99.6 100.0 80.6 82.1 99.7 2.9 3.0 3.2 7.4 7.1 42.3 99.8 99.7 100.0
T4 - 99.8 99.7 100.0 82.8 83.9 99.7 4.4 4.7 4.9 9.7 9.6 45.3 99.8 99.8 100.0
H1 - 99.5 99.4 99.8 72.2 74.9 98.8 1.4 1.6 1.4 4.1 4.1 29.6 99.7 99.6 99.9
H2 - 99.8 99.6 100.0 82.1 83.4 99.7 3.4 3.5 3.8 8.3 8.3 44.5 99.8 99.8 100.0
H3 - 99.8 99.7 100.0 84.1 84.9 99.7 5.1 5.3 5.4 10.6 10.6 47.5 99.8 99.8 100.0
R - 99.9 99.9 100.0 73.1 76.2 99.5 5.2 4.8 5.1 7.3 7.5 25.6 100.0 100.0 100.0
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Table 3 . Size and power of exact Monte Carlo tests with Gaussian errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0

T1mc 5 5.1 5.2 72.3 4.9 5.0 67.1 5.0 4.8 4.9 5.2 5.1 21.0 4.8 4.2 74.9
T2mc - 5.4 11.2 100.0 5.3 5.6 100.0 5.3 5.4 5.1 5.3 5.5 55.7 5.5 69.4 100.0
T3mc - 5.2 9.0 99.3 5.0 5.4 99.2 4.9 5.0 4.9 5.1 5.1 60.7 5.1 40.4 99.4
T4mc - 5.3 11.2 100.0 5.2 5.6 100.0 5.3 5.4 5.1 5.2 5.4 55.7 5.5 69.4 100.0
H1mc - 5.1 9.0 97.6 4.8 5.3 97.2 4.8 4.9 4.9 5.0 5.1 56.5 5.1 39.9 97.8
H2mc - 5.2 9.0 99.3 5.0 5.4 99.2 5.0 5.0 4.9 5.0 5.1 60.7 5.1 40.4 99.4
H3mc - 5.3 11.2 100.0 5.2 5.6 100.0 5.3 5.4 5.1 5.3 5.4 55.7 5.5 69.4 100.0
Rmc - 5.5 16.4 100.0 5.5 5.7 100.0 5.4 5.2 5.3 5.0 4.9 43.1 5.8 100.0 100.0

T1mc 10 5.0 4.4 99.0 5.0 5.0 96.8 5.1 5.0 5.2 5.1 5.0 32.9 4.6 4.0 98.8
T2mc - 5.2 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 5.5 5.6 54.6 5.7 40.9 100.0
T3mc - 5.0 7.8 100.0 5.0 5.1 100.0 4.9 4.7 4.9 5.0 5.0 60.9 5.1 35.1 100.0
T4mc - 5.1 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 5.5 5.6 54.6 5.7 40.9 100.0
H1mc - 5.0 7.7 99.9 5.0 5.2 99.9 4.8 5.0 4.7 4.8 4.9 58.5 5.1 34.9 99.9
H2mc - 5.0 7.8 100.0 5.0 5.1 100.0 4.9 4.7 4.9 5.1 5.0 60.9 5.1 35.1 100.0
H3mc - 5.2 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 5.5 5.6 54.6 5.7 40.9 100.0
Rmc - 5.6 16.7 100.0 5.0 5.6 100.0 5.1 5.3 5.4 5.5 5.8 35.1 5.0 100.0 100.0

T1mc 20 4.9 3.3 99.9 5.0 4.6 99.2 4.9 4.7 4.8 4.8 5.0 40.7 4.7 4.3 99.9
T2mc - 5.1 6.8 100.0 5.0 4.8 100.0 5.1 4.8 4.9 5.3 5.7 51.5 5.6 14.6 100.0
T3mc - 4.8 6.6 100.0 5.0 4.7 100.0 5.0 4.6 4.7 5.0 5.1 54.3 5.0 13.9 100.0
T4mc - 5.0 6.8 100.0 5.0 4.8 100.0 5.1 4.9 5.0 5.2 5.7 51.5 5.6 14.6 100.0
H1mc - 4.9 6.6 100.0 5.0 4.7 99.9 5.0 4.6 4.9 5.0 5.1 51.5 5.1 14.0 100.0
H2mc - 4.8 6.6 100.0 5.0 4.7 100.0 5.0 5.0 4.8 5.2 5.1 54.3 5.1 13.9 100.0
H3mc - 5.1 6.8 100.0 5.0 4.8 100.0 5.1 5.1 5.0 5.0 5.7 51.5 5.6 14.6 100.0
Rmc - 5.8 30.5 100.0 5.0 5.9 100.0 5.2 5.2 4.9 5.1 5.9 26.1 5.5 100.0 100.0

25



Table 3 (continued). Size and power of exact Monte Carlo tests with Gaussian errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1mc 5 71.2 72.3 80.3 44.5 44.1 76.0 4.8 5.1 5.2 7.9 8.4 24.4 74.3 74.0 80.5
T2mc - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 12.5 14.3 67.7 100.0 100.0 100.0
T3mc - 99.3 99.5 99.6 96.3 96.5 99.4 4.8 5.0 4.9 14.6 16.2 71.2 99.3 99.4 99.5
T4mc - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 12.5 14.3 67.7 100.0 100.0 100.0
H1mc - 97.6 97.5 97.3 91.9 92.5 97.0 4.8 5.0 4.9 14.2 15.7 63.9 97.7 97.7 97.1
H2mc - 99.3 99.5 99.6 96.3 96.5 99.4 4.7 4.9 5.1 14.6 16.2 71.2 99.3 99.4 99.5
H3mc - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 12.5 14.3 67.7 100.0 100.0 100.0
Rmc - 100.0 100.0 100.0 97.4 98.6 100.0 5.0 5.0 5.0 9.6 10.7 54.8 100.0 100.0 100.0

T1mc 10 98.3 98.3 99.8 75.6 79.9 98.5 4.9 5.2 5.2 9.6 10.6 40.8 99.0 98.9 99.6
T2mc - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 5.1 5.1 13.2 12.7 63.4 100.0 100.0 100.0
T3mc - 100.0 100.0 100.0 98.9 99.3 100.0 4.9 4.8 5.0 14.5 14.2 70.1 100.0 100.0 100.0
T4mc - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 5.1 5.1 13.2 12.7 63.4 100.0 100.0 100.0
H1mc - 99.9 99.8 99.8 97.7 98.1 99.7 4.9 4.8 5.0 14.4 13.8 66.2 99.9 99.9 99.8
H2mc - 100.0 100.0 100.0 98.9 99.3 100.0 4.8 4.7 4.9 14.5 14.2 70.1 100.0 100.0 100.0
H3mc - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 5.1 5.1 13.2 12.7 63.4 100.0 100.0 100.0
Rmc - 100.0 100.0 100.0 94.8 96.6 100.0 5.2 5.3 5.4 7.9 8.4 41.6 100.0 100.0 100.0

T1mc 20 99.6 99.5 99.8 80.5 82.4 99.3 5.1 5.3 5.2 10.6 10.1 40.1 99.8 99.8 99.9
T2mc - 100.0 100.0 100.0 93.6 94.8 100.0 5.1 5.1 5.0 12.0 11.5 51.2 100.0 100.0 100.0
T3mc - 100.0 100.0 100.0 95.0 95.7 100.0 4.8 4.7 4.8 12.5 12.7 54.3 100.0 100.0 100.0
T4mc - 100.0 100.0 100.0 93.6 94.8 100.0 5.1 5.1 5.0 12.0 11.5 51.2 100.0 100.0 100.0
H1mc - 100.0 100.0 100.0 94.0 94.9 100.0 4.7 4.7 4.9 12.0 12.4 51.4 100.0 100.0 100.0
H2mc - 100.0 100.0 100.0 95.0 95.7 100.0 4.8 4.7 4.8 12.5 12.7 54.3 100.0 100.0 100.0
H3mc - 100.0 100.0 100.0 93.6 94.8 100.0 5.1 5.1 5.0 12.0 11.5 51.2 100.0 100.0 100.0
Rmc - 100.0 100.0 100.0 84.2 88.2 100.0 5.3 5.4 5.2 7.0 7.3 26.7 100.0 100.0 100.0
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Table 4 . Size and power of exact Monte Carlo tests with t(3) errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0

T1mc 5 4.4 4.6 47.1 4.5 4.9 42.2 5.2 4.9 4.8 5.1 5.2 12.9 4.7 4.6 49.1
T2mc - 5.3 7.6 99.9 5.1 5.1 99.4 5.3 5.2 5.4 5.3 5.5 32.7 5.2 50.7 99.9
T3mc - 4.8 6.3 96.8 5.0 5.4 95.7 4.9 4.7 4.9 4.9 5.1 35.2 5.1 29.6 96.8
T4mc - 5.3 7.6 99.9 5.1 5.1 99.4 5.3 5.2 5.4 5.3 5.4 32.7 5.2 50.7 99.9
H1mc - 4.9 6.4 95.7 4.9 5.3 94.4 4.7 4.8 4.8 4.8 5.0 34.5 5.1 29.1 95.5
H2mc - 4.8 6.3 96.8 5.0 5.4 95.7 4.9 4.7 4.9 4.9 5.1 35.2 5.1 29.6 96.8
H3mc - 5.3 7.6 99.9 5.0 5.1 99.4 5.3 5.2 5.4 5.2 5.4 32.7 5.2 50.7 99.9
Rmc - 5.4 9.4 100.0 5.1 5.1 99.5 5.1 5.0 5.2 5.4 5.6 27.9 5.4 91.0 100.0

T1mc 10 4.5 4.7 91.1 4.7 4.9 82.8 5.1 4.9 5.1 5.0 5.2 23.2 5.1 4.4 90.5
T2mc - 5.2 6.9 99.9 5.4 5.3 99.5 5.1 5.2 5.3 5.3 5.2 39.2 5.4 31.9 99.9
T3mc - 5.0 6.4 99.8 5.1 5.1 99.4 4.8 4.9 4.9 5.1 5.1 43.3 5.1 26.7 99.7
T4mc - 5.2 6.9 99.9 5.4 5.3 99.5 5.1 5.2 5.3 5.3 5.2 39.2 5.4 31.9 99.9
H1mc - 4.9 6.4 99.7 5.0 5.1 99.2 4.8 4.8 4.7 5.0 5.1 42.4 4.9 26.5 99.7
H2mc - 5.0 6.4 99.8 5.1 5.1 99.4 4.8 4.9 4.9 5.1 5.1 43.3 5.1 26.7 99.7
H3mc - 5.2 6.9 99.9 5.4 5.3 99.5 5.1 5.2 5.3 5.3 5.2 39.2 5.4 31.9 99.9
Rmc - 5.5 10.6 100.0 5.5 5.4 99.7 5.1 5.1 5.2 5.3 5.5 27.7 5.7 95.5 100.0

T1mc 20 4.8 4.2 98.0 5.0 4.8 95.0 4.9 4.8 4.8 5.0 5.1 28.7 5.2 4.8 98.0
T2mc - 5.4 5.9 99.9 5.3 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 5.3 12.0 99.9
T3mc - 5.1 5.8 99.9 5.1 5.1 99.5 4.8 5.0 4.7 4.8 4.9 40.7 5.1 11.2 99.8
T4mc - 5.4 5.9 99.9 5.3 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 5.3 12.0 99.9
H1mc - 5.1 5.8 99.9 5.1 5.2 99.4 4.9 4.9 4.8 4.8 4.8 40.3 5.1 11.3 99.9
H2mc - 5.1 5.8 99.9 5.1 5.1 99.5 4.8 5.0 4.7 4.8 4.9 40.7 5.1 11.2 99.8
H3mc - 5.4 5.9 99.9 5.3 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 5.3 12.0 99.9
Rmc - 5.7 12.3 100.0 5.2 5.6 99.3 5.2 5.2 5.3 5.3 5.4 22.9 5.9 98.3 100.0

27



Table 4 (Continued). Size and power of exact Monte Carlo tests with t(3) errors at nominal level 5%

λ = −20 λ = −5 λ = 0 λ = 1 λ = 100

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5

η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1mc 5 46.7 46.9 67.0 25.6 27.3 58.7 4.7 4.9 5.0 6.3 6.5 18.4 50.3 51.8 68.9
T2mc - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 5.4 9.1 9.4 48.9 99.9 99.9 100.0
T3mc - 96.7 96.9 99.2 79.9 82.4 98.7 4.9 4.8 4.9 10.1 10.1 52.6 96.8 97.2 99.1
T4mc - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 5.4 9.1 9.4 48.9 99.9 99.9 100.0
H1mc - 95.2 95.6 97.5 77.5 79.7 96.6 4.6 4.7 4.9 9.9 10.1 50.3 95.6 96.0 97.7
H2mc - 96.7 96.9 99.2 79.9 82.4 98.7 4.9 4.8 4.9 10.1 10.1 52.6 96.8 97.2 99.1
H3mc - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 5.4 9.1 9.4 48.9 99.9 99.9 100.0
Rmc - 100.0 99.9 100.0 79.6 82.9 99.8 5.3 5.2 5.1 7.3 7.7 40.2 100.0 100.0 100.0

T1mc 10 89.6 89.8 98.6 56.3 56.9 95.7 5.1 5.3 5.2 8.6 8.8 34.6 91.2 91.5 98.6
T2mc - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
T3mc - 99.6 99.7 100.0 89.7 91.5 99.9 5.0 4.9+ 5.1 11.6 12.4 56.9 99.6 99.8 100.0
T4mc - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
H1mc - 99.5 99.7 99.9 88.7 90.2 99.6 4.9 5.1 4.8 11.5 12.1 55.1 99.6 99.8 99.9
H2mc - 99.6 99.7 100.0 89.7 91.5 99.9 5.0 4.9 5.1 11.6 12.4 56.9 99.6 99.8 100.0
H3mc - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
Rmc - 99.9 100.0 100.0 82.6 83.9 99.8 5.5 5.3 5.1 8.0 7.8 35.0 100.0 100.0 100.0

T1mc 20 97.3 97.6 99.8 69.8 71.5 98.2 4.8 4.8 5.1 9.5 10.4 38.8 98.4 98.8 99.9
T2mc - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 5.3 10.9 10.8 48.3 99.9 99.9 100.0
T3mc - 99.8 99.7 100.0 87.1 88.4 99.7 4.9 4.8 5.0 11.4 11.9 50.8 99.9 99.9 100.0
T4mc - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 5.3 10.9 10.8 48.3 99.9 99.9 100.0
H1mc - 99.7 99.7 100.0 86.3 87.7 99.6 4.7 4.6 5.1 11.5 11.6 49.0 99.9 99.9 100.0
H2mc - 99.8 99.7 100.0 87.1 88.4 99.7 4.9 4.8 5.0 11.4 11.9 50.8 99.9 99.9 100.0
H3mc - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 5.3 10.9 10.8 48.3 99.9 99.9 100.0
Rmc - 100.0 99.9 100.0 75.6 79.3 99.6 5.3 5.2 5.4 7.3 7.8 26.4 100.0 100.0 100.0
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power. This is the case in particular for t(3) errors when k2 = 10, 20 and λ = −5, 1; see Table 4.

8. Empirical illustrations

We illustrate our theoretical results on exogeneity tests through two empirical applications related
to important issues in macroeconomics and labor economics literature: (1) the relation between
trade and growth [Irwin and Tervio (2002), Frankel and Romer (1999), Harrison (1996), Mankiw,
Romer and Weil (1992)]; (2) the standard problem of measuring returns to education [Dufour and
Taamouti (2007), Angrist and Krueger (1991), Angrist and Krueger (1995), Angrist, Imbens and
Krueger (1999), Mankiw et al. (1992)].

8.1. Trade and growth

The trade and growth model studies the relationship between standards of living and openness.
Frankel and Romer (1999) argued that trade share (ratio of imports or exports to GDP) which is the
commonly used indicator of openness should be viewed as endogenous. So, instrumental variables
method should be used to estimate the income-trade relationship. The equation studied is

ln(Inci) = β 0 +β 1Tradei + γ1ln(Popi)+ γ2ln(Areai)+ui, i = 1, . . . , T (8.1)

where Inci is the income per capita in country i, Tradei is the trade share (measured as a ratio of
imports and exports to GDP), Popi is the population of country i, and Areai is country i area. The
first stage model for Trade variable is given by

Tradei = a+bXi + c1ln(Popi)+ c2ln(Areai)+Vi, i = 1, . . . , T (8.2)

where Xi is an instrument constructed on the basis of geographic characteristics. In this paper, we
use the sample of 150 countries and the data include for each country: the trade share in 1985, the
area and population (1985), per capita income (1985), and the fitted trade share (instrument).

We wish to assess the exogeneity of the trade share variable in (8.1). The F-statistic in the
first stage regression (8.2) is around 13 [see Frankel and Romer (1999, Table 2, p.385) and Dufour
and Taamouti (2007)], so the fitted instrument X does not appear to be weak. Table 5 presents the
p-values of the DWH and RH tests computed from the tabulated and exact Monte Carlo critical
values. The Monte Carlo critical values are computed for Gaussian and t(3) errors. Because the
model contains one instrument and one (supposedly) endogenous variable, the statistic T1 is not well
defined and is omitted.

First, we note that the p-values based on the usual asymptotic distributions are close to the 5%
nominal level for H3, T2, T4 and R. So, there is evidence against the exogeneity of the trade
share (at nominal level of 5%) when these statistics are applied. Meanwhile, the p-values of H1,
H2, and T3 are relatively large (around 12%) so that there is little evidence against trade share
exogeneity at 5% nominal level using the latter statistics. Since the standard H1, H2, and T3 tests
are conservative when identification is weak, the latter result may be due to the fact that the fitted
instrument is not very strong.
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Table 5. Exogeneity in trade and growth model

Statistics Estimation Standard p-value (%) MC p-value (%) MC p-value (%)
(Gaussian errors) [t(3)-errors]

R 3.9221 4.95 4.98 5.38
H1 2.3883 12.23 6.14 5.99
H2 2.4269 11.93 6.12 5.96
H3 3.9505 4.67 5.39 5.66
T2 3.9221 4.95 5.39 5.66
T3 2.3622 12.43 6.12 5.96
T4 3.8451 4.99 5.49 5.66

Second, we observe the exact Monte Carlo tests yield p-values close to the 5% level in all cases,
thus indicating that there is evidence of trade share endogeneity in this model. This is supported
by the relatively large discrepancy between the OLS estimate of β 1 (0.28) and the 2SLS estimate
(2.03). Overall, our results underscore the importance of size correction through the exact Monte
Carlo procedures proposed.

8.2. Education and earnings

We now consider the well known example of estimating the returns to education [see Angrist and
Krueger (1991); Angrist and Krueger (1995); and Bound, Jaeger and Baker (1995)]. The equation
studies is a relationship where the log-weekly earning (y) is explained by the number of years of
education (E) and several other covariates (age, age squared, 10 dummies for birth of year):

y = β 0 +β 1E +
k1

∑
i=1

γ iXi +u. (8.3)

In this model, β 1 measures the return to education. Because education can be viewed as endogenous,
Angrist and Krueger (1991) used instrumental variables obtained by interacting quarter of birth
with the year of birth (in this application, we use 40 dummies instruments). The basic idea is that
individuals born in the first quarter of the year start school at an older age, and can therefore drop
out after completing less schooling than individuals born near the end of the year. Consequently,
individuals born at the beginning of the year are likely to earn less than those born during the rest
of the year. The first stage model for E is then given by

E = π0 +
k2

∑
i=1

π iXi +
k1

∑
i=1

φ iXi +V (8.4)

where X is the instrument matrix. It is well known that the instruments X constructed in this way
are very weak and explains very little of the variation in education; see Bound et al. (1995). The
data set consists of the 5% public-use sample of the 1980 US census for men born between 1930
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Table 6. Exogeneity in education and earning model

Statistics Estimation Standard p-value (%) MC p-value (%) MC p-value (%)
(Gaussian errors) [t(3)-errors]

R 0.68 93.99 49.91 49.93
H1 1.34 24.76 24.26 24.30
H2 1.34 24.76 24.26 24.30
H3 1.35 24.54 24.26 24.30
T1 2.04 16.11 22.49 22.99
T2 1.35 24.54 24.26 24.30
T3 1.35 22.48 24.26 24.30
T4 1.35 24.54 24.26 24.30

and 1939. The sample contains 329 509 observations.
As in Section 8.2, we want to assess the exogeneity of education in (8.3) - (8.4). Table 6 shows

the results of the tests with both the usual and exact Monte Carlo critical values. As seen, the p-
values of all tests are quite large, thus suggesting that there is little evidence against the exogeneity
of the education variable, even at 15% nominal level. This means that either the education variable
is effectively exogenous or the instruments used are very poor so that the power of the test is flat, as
shown in Section 6. The latter scenario is highly plausible from the previous literature [for example,
see Bound et al. (1995)]. This viewed is reinforced by the small discrepancy between the OLS
estimate (0.07) and the 2SLS estimate (0.08) of β 1.

9. Conclusion

This paper develops a finite-sample theory of the distribution of standard Durbin-Wu-Hausman and
Revankar-Hartley specification tests under both the null hypothesis of exogeneity (level) and the
alternative hypothesis of endogeneity (power), with or without identification. Our analysis provides
several new insights and extensions of earlier procedures.

Our study of the finite-sample distributions of the statistics under the null hypothesis shows that
all tests are robust to weak instruments, missing instruments or misspecified reduced forms – in the
sense that level is controlled. Indeed, we provided a general characterization of the structure of the
test statistics which allows one to perform exact Monte Carlo tests under general parametric distri-
butional assumptions, which are in no way restricted to the Gaussian case, including heavy-tailed
distributions without moments. The tests so obtained are exact even in cases where identification
fails (or is weak) and conventional asymptotic theory breaks down.

After proving a general invariance property, we provided a characterization of the power of
the tests that clearly exhibits the factors which determine power. We showed that exogeneity tests
have no power in the extreme case where all IVs are weak [similar to Staiger and Stock (1997),
and Guggenberger (2010)], but typically have power as soon as we have one strong instrument.
Consequently, exogeneity tests can detect an exogeneity problem even if not all model parameters
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are identified, provided at least some parameters are identifiable.
Though the exact distributional theory given in this paper requires relatively specific distribu-

tional assumptions, the “finite-sample” procedures provided remain asymptotically valid in the same
way (in the sense that test level is controlled) under standard asymptotic assumptions. We study this
problem in a separate paper [Doko Tchatoka and Dufour (2016)]. Further, even if exogeneity hy-
potheses can have economic interest by themselves, we also show there how exogeneity tests can
be fruitfully applied to build pretest estimators which generally dominate OLS and 2SLS estimators
when the exogeneity of explanatory variables is in uncertain.
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APPENDIX

A. Wu and Hausman test statistics

We show here that Durbin-Wu statistics can be expressed in the same way as alternative Hausman
statistics. The statistics Tl, l = 1, 2, 3, 4 are defined in Wu (1973, eqs. (2.1), (2.18), (3.16), and
(3.20)) as:

T1 = κ1
Q∗

Q1
, T2 = κ2

Q∗

Q2
, T3 = κ3

Q∗

Q3
, T4 = κ4

Q∗

Q4
, (A.1)

Q∗ = (b1 −b2)
′
[

(Y ′A2Y )−1 − (Y ′A1Y )−1]−1
(b1 −b2), (A.2)

Q1 = (y−Y b2)
′A2(y−Y b2), Q2 = Q4 −Q∗, (A.3)

Q4 = (y−Y b1)
′A1(y−Y b1), Q3 = (y−Y b2)

′A1(y−Y b2), (A.4)

bi = (Y ′AiY )−1Y ′Aiy, i = 1, 2, A1 = M1, A2 = M−M1 , (A.5)

where b1 is the ordinary least squares estimator of β , and b2 is the instrumental variables method
estimator of β . So, in our notations, b1 ≡ β̂ and b2 ≡ β̃ . From (3.8) - (3.13), we have:

Q∗ = T (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = T σ̃2(β̃ − β̂ )′Σ̂−1
2 (β̃ − β̂ ) , (A.6)

Q1 = T σ̃2
1 , Q3 = T σ̃2 , Q4 = T σ̂2 , (A.7)

Q2 = Q4 −Q∗ = T σ̂2 −T (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = T σ̃2
2 . (A.8)

Hence, we can write Tl as:

Tl = κ l(β̃ − β̂ )′Σ̃−1
l (β̃ − β̂ ) , l = 1, 2, 3, 4 ,

where κ l, and Σ̃l are defined in (3.8) - (3.13).
To obtain (3.17), set T0 = (β̃ − β̂ )′∆̂−1(β̃ − β̂ ). Then σ̃2

2 = σ̂2 −T0, T4 = κ4T0/σ̂2, and

T2 = κ2
T0

σ̃2
2

= κ2
T0

σ̂2 −T0
= κ2

(T0/σ̂2)

1− (T0/σ̂2)
= κ2

(T4/κ4)

1− (T4/κ4)
, (A.9)

hence
T4

κ4
=

(T2/κ2)

(T2/κ2)+1
=

T2

T2 +κ2
=

1
(κ2/T2)+1

. (A.10)

In the sequel of this appendix, we shall use the following matrix formulas which are easily
established by algebraic manipulations [on the invertibility of matrix differences, see Harville (1997,
Theorem 18.2.4)].

Lemma A.1 DIFFERENCE OF MATRIX INVERSES. Let A and B be two nonsingular r×r matrices.
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Then

A−1 −B−1 = B−1(B−A)A−1 = A−1(B−A)B−1

= A−1(A−AB−1A)A−1 = B−1(BA−1B−B)B−1. (A.11)

Furthermore, A−1 −B−1 is nonsingular if and only if B−A is nonsingular. If B−A is nonsingular,
we have:

(A−1 −B−1)−1 = A(B−A)−1B = A−A(A−B)−1A = A+A(B−A)−1A = A[A−1 +(B−A)−1]A

= B(B−A)−1A = B(B−A)−1B−B = B[(B−A)−1 −B−1]B

= A(A−AB−1A)−1A = B(BA−1B−B)−1B . (A.12)

It is easy to see from condition (2.6) that Ω̂IV , Ω̂LS and Σ̂V are nonsingular. On setting A = Ω̂IV

and B = Ω̂LS, we get:

B−A = Ω̂LS − Ω̂IV =
1
T

Y ′M1Y −
1
T

Y ′N1Y =
1
T

Y ′(M1 −N1)Y =
1
T

Y ′MY =
1
T

V̂ ′V̂ = Σ̂V , (A.13)

so Ω̂LS − Ω̂IV is nonsingular. By Lemma A.1, ∆̂ = Ω̂−1
IV − Ω̂−1

LS = A−1 −B−1 is also nonsingular,
and

∆̂−1 = A+A(B−A)−1A = Ω̂IV + Ω̂IV (Ω̂LS − Ω̂IV )−1Ω̂IV = Ω̂IV + Ω̂IV Σ̂−1
V Ω̂IV

=
1
T

[

Y ′N1Y +Y ′N1Y (Y ′MY )−1Y ′N1Y
]

=
1
T

Y ′N1
[

IT +Y (Y ′MY )−1Y ′
]

N1Y . (A.14)

From the above form, it is clear that ∆̂−1 is positive definite. Note also that

∆̂−1 = B(B−A)−1B−B = Ω̂LS(Ω̂LS − Ω̂IV )−1Ω̂LS − Ω̂LS = Ω̂LS Σ̂−1
V Ω̂LS − Ω̂LS

=
1
T

[(Y ′M1Y )(Y ′MY )−1(Y ′M1Y )− (Y ′M1Y )] =
1
T

Y ′M1[Y (Y ′MY )−1Y ′− IT ]M1Y . (A.15)

The latter shows that ∆̂−1 only depends on the least-squares residuals M1Y and MY .

B. Regression interpretation of DWH test statistics

Let us now consider the regressions (3.22) - (3.25). Using Y = Ŷ + V̂ , Ŷ = XΠ̂ and Π̂ =
(X ′X)−1X ′Y , we see that the 2SLS residual vector ũ for model (2.1) based on the instrument matrix
X = [X1, X2] can be written as

ũ = y−Y β̃ −X1γ̃ = (y− Ŷ β̃ −X1γ̃)−V̂ β̃ = M1(y− Ŷ β̃ )−V̂ β̃
= M1(y− Ŷ β̃ −V̂ β̃ ) = M1(y−Y β̃ ) (B.1)

34



where β̃ and γ̃ are the 2SLS estimators of β and γ , and the different sum-of-squares functions
satisfy:

S(θ̂) = S∗(θ̂ ∗) , ũ′ũ = S(θ̂ 0
) = S∗(θ̂

0
∗) = S̃(θ̂ 0

∗∗) , S̃(θ̂ ∗∗) = (y−Y β̃ )′M(y−Y β̃ ) , (B.2)

S(θ̂ 0
)−S(θ̂) = S∗(θ̂

0
∗)−S∗(θ̂ ∗) . (B.3)

Let R =
[

0 0 IG
]

, and R∗ =
[

IG 0 −IG
]

, so that Rb = a and R∗θ ∗ = β − a. The null
hypotheses H0 : a = 0 and H∗

0 : β = b can thus be written as

H0 : Rθ = 0 , H∗
0 : R∗θ ∗ = 0. (B.4)

Further, θ̂ ∗ = [β̃ ′
, γ̃ ′, b̃′]′ and θ̂ 0

∗ = [β̂
′
, γ̂ ′, β̂

′
]′, where β̂ and γ̂ are the OLS estimators of β and γ

based on the model (2.1), and

R∗θ̂ =
[

IG 0 −IG
]





β̃
γ̃
b̃



= β̃ − b̃ , (B.5)

θ̂ 0
∗ = θ̂ ∗ +(Z′

∗Z∗)
−1R′

∗

[

R∗(Z
′
∗Z∗)

−1R′
∗

]−1
(−R∗θ̂ ∗) , (B.6)

S(θ̂ 0
∗)−S(θ̂ ∗) = (θ̂ 0

∗− θ̂ ∗)
′Z′

∗Z∗(θ̂
0
∗− θ̂ ∗) = (R∗θ̂ ∗)

′
[

R∗(Z
′
∗Z∗)

−1R′
∗

]−1
(R∗θ̂ ∗) , (B.7)

where Z∗ = [Ŷ , X1, V̂ ]. On writing Z∗ = [X̂1, V̂ ], where X̂1 = [Ŷ , X1], we get:

Z′
∗Z∗ =

[

(X̂ ′
1X̂1) 0
0 (V̂ ′V̂ )

]

, (Z′
∗Z∗)

−1 =

[

(X̂ ′
1X̂1)

−1 0
0 (V̂ ′V̂ )−1

]

, (B.8)

(X̂ ′
1X̂1)

−1 =

[

Ŷ ′Ŷ Ŷ ′X1

X ′
1Ŷ X ′

1X1

]−1

=

[

WYY WY 1

W1Y W11

]

, (B.9)

where WYY =
[

(Ŷ ′Ŷ )− Ŷ ′X1(X ′
1X1)

−1X ′
1Ŷ
]−1

=
[

Ŷ ′M1Ŷ
]−1

= [Y ′(M1 −M)Y ]−1,

(Z′
∗Z∗)

−1R′
∗ =





WYY WY 1 0
W1Y W11 0

0 0 (V̂ ′V̂ )−1









IG

0
−IG



=





WYY

W1Y

−(V̂ ′V̂ )−1



 , (B.10)

R∗(Z
′
∗Z∗)

−1R′
∗ = WYY +(V̂ ′V̂ )−1 , (B.11)

θ̂ 0
∗− θ̂ ∗ =





β̂ − β̃
γ̂ − γ̃
β̂ − b̃



=





WYY

W1Y

−(V̂ ′V̂ )−1





[

WYY +(V̂ ′V̂ )−1]−1
(b̃− β̃ ) . (B.12)

From the latter equation, we see that

β̂ − β̃ = WYY
[

WYY +(V̂ ′V̂ )−1]−1
(b̃− β̃ ) = WYY

[

WYY +(V̂ ′V̂ )−1]−1
ã , (B.13)
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where ã = b̃− β̃ is the OLS estimate of a in (3.23). Hence, we have

ã = b̃− β̃ =
[

WYY +(V̂ ′V̂ )−1]W−1
YY (β̂ − β̃ )

=
{

[Y ′(M1 −M)Y ]−1 +(V̂ ′V̂ )−1} [Y ′(M1 −M)Y ](β̂ − β̃ ) , (B.14)

which entails that

S(θ̂ 0
∗)−S(θ̂ ∗) = (R∗θ̂ ∗)

′
[

R∗(Z
′
∗Z∗)

−1R′
∗

]−1
(R∗θ̂ ∗)

= (b̃− β̃ )′
{

[Y ′(M1 −M)Y ]−1 +(V̂ ′V̂ )−1}−1
(b̃− β̃ )

= (β̂ − β̃ )′[Y ′(M1 −M)Y ]
{

[Y ′(M1 −M)Y ]−1 +(V̂ ′V̂ )−1} [Y ′(M1 −M)Y ](β̂ − β̃ )

= (β̂ − β̃ )′W−1
YY

[

WYY +(Y ′MY )−1]W−1
YY (β̂ − β̃ )

= (β̂ − β̃ )′W−1
YY

[

WYY +(Y ′M1Y −W−1
YY )−1]W−1

YY (β̂ − β̃ ) . (B.15)

Using Lemma A.1 with A = W−1
YY and B = Y ′M1Y in (B.15), we then get:

S(θ̂ 0
∗)−S(θ̂ ∗) = (β̂ − β̃ )′W−1

YY

[

WYY +(Y ′M1Y −W−1
YY )−1]W−1

YY (β̂ − β̃ )

= (β̂ − β̃ )′A
[

A−1 +(B−A)−1]A(β̂ − β̃ ) = (β̂ − β̃ )′(B−1 −A−1)−1(β̂ − β̃ )

= (β̂ − β̃ )′{[Y ′(M1 −M)Y ]−1 − (Y ′M1Y )−1}−1(β̂ − β̃ )

= T (β̃ − β̂ )′[Ω̂−1
IV − Ω̂−1

LS ]−1(β̃ − β̂ ) = T (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) (B.16)

where Ω̂IV = 1
T Y ′(M1 −M)Y and Ω̂LS = 1

T Y ′M1Y. Since we have S∗(θ̂
0
∗)−S∗(θ̂ ∗) = S(θ̂ 0

)−S(θ̂),
we get from (B.16), (3.13) and (3.30):

S(θ̂) = S(θ̂ 0
)− [S∗(θ̂

0
∗)−S∗(θ̂ ∗)] = S(θ̂ 0

)−T (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = T σ̃2
2 . (B.17)

It is also clear from (3.13) and (3.30) that

S(θ̂ 0
) = T σ̂2, S∗(θ̂

0
∗) = T σ̃2 . (B.18)

Hence, except for H1, the other statistics can be expressed as:

H2 = T

(

S(θ̂ 0
)−S(θ̂)

S∗(θ̂
0
∗)

)

, H3 = T

(

S(θ̂ 0
)−S(θ̂)

S(θ̂ 0
)

)

, (B.19)

T1 = κ1

(

S(θ̂ 0
)−S(θ̂)

S∗(θ̂
0
∗)− S̃(θ̂ ∗∗)

)

= κ1

(

S(θ̂ 0
)−S(θ̂)

S̃(θ̂ 0
∗∗)− S̃(θ̂ ∗∗)

)

, (B.20)

T2 = κ2

(

S(θ̂ 0
)−S(θ̂)

S(θ̂)

)

, T3 = κ3

(

S(θ̂ 0
)−S(θ̂)

S∗(θ̂
0
∗)

)

, T4 = κ4

(

S(θ̂ 0
)−S(θ̂)

S(θ̂ 0
)

)

, (B.21)
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R = κR

(

S̄(θ̌ 0
)− S̄(θ̌)

S̄(θ̌)

)

. (B.22)

C. Proofs

To establish Proposition 4.1, it will be useful to state some basic identities for the different compo-
nents of alternative exogeneity test statistics.

Lemma C.1 PROPERTIES OF EXOGENEITY STATISTICS COMPONENTS. The random vectors
and matrices in (3.1) - (3.14) satisfy the following identities: setting

B1 =: (Y ′M1Y )−1Y ′M1 , B2 =: (Y ′N1Y )−1Y ′N1 , (C.1)

C1 =: B2 −B1 , Ψ0 =: C′
1∆̂−1C1 , N2 =: IT −M1YA2 , (C.2)

we have
B1 M1 = B1 , B2 M1 = B2 N1 = B2 , B1Y = B2Y = IG, (C.3)

C1Y = 0 , C1X1 = 0 , C1 P̄[M1Y ] = 0 , C1 M1 = C1 M̄[M1Y ] = C1 , (C.4)

M1YA1 = P̄[M1Y ] , M1Ψ0 M1 = M1Ψ0 = Ψ0 M1 = Ψ0 , (C.5)

M1ΨR M1 = ΨR , M1 ΛR M1 = M ΛR M = ΛR , (C.6)

B1 B′
1 = B1 B′

2 = B2 B′
1 =

1
T

Ω̂−1
LS , B2 B′

2 =
1
T

Ω̂−1
IV , (C.7)

C1C′
1 =

1
T

(

Ω̂−1
IV − Ω̂−1

LS

)

=
1
T

∆̂ , C1Ψ0 =
1
T

C1 , Ψ0Ψ0 =
1
T

Ψ0 , (C.8)

β̃ − β̂ = (B2 −B1)y = C1 y = C1 (M1 y) , (C.9)

(β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = y′Ψ0 y = (M1 y)′Ψ0 (M1 y) , (C.10)

y−Y β̂ = [IT −Y B1]y , y−Y β̃ = [IT −Y B2]y , (C.11)

û = M1(y−Y β̂ ) = M̄[Ȳ ]y = M1M̄[M1Y ]y = M̄[M1Y ](M1 y) , (C.12)

M(y−Y β̂ ) = M M̄[M1Y ]y = M M̄[M1Y ](M1 y) , (C.13)

N1 (y−Y β̃ ) = M1 P(y−Y β̃ ) = M1 M̄[M1PY ]Py = M̄[N1Y ]N1 y

= PM1(y−Y β̃ ) = M̄[PM1Y ]P(M1 y) , (C.14)

ũ = M1(y−Y β̃ ) = N2(M1 y) , M(y−Y β̃ ) = M N2 (M1 y) , (C.15)

σ̃2 =
1
T

(M1 y)′ N′
2 N2 (M1 y) , (C.16)

σ̂2 =
1
T

y′M̄[Ȳ ]y =
1
T

y′M1M̄[M1Y ]y =
1
T

(M1 y)′M̄[M1Y ] (M1 y) , (C.17)
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σ̃2
1 =

1
T

y′N1 M̄[N1Y ]N1 y =
1
T

(M1 y)′PM̄[PM1Y ]P(M1 y) , (C.18)

σ̃2
2 = (M1 y)′

{

1
T

M̄[M1Y ]−Ψ0

}

(M1 y) , (C.19)

y′ΨR y =
1
T

y′P̄
[

M̄[Ȳ ]X2
]

M̄[Ȳ ]y =
1
T

(M1 y)′P̄
[

M̄[Ȳ ]X2
]

(M1 y) , (C.20)

σ̂2
R =

1
T

y′ M̄[Z]y =
1
T

(M1 y)′M̄[Z](M1 y) . (C.21)

PROOF OF LEMMA C.1 Using the idempotence of M1 and (3.15), we see that:

B1 M1 = (Y ′M1Y )−1Y ′M1M1 = (Y ′M1Y )−1Y ′M1 = B1 , (C.22)

B2 M1 = [Y ′N1Y ]−1Y ′N1M1 = [Y ′N1Y ]−1Y ′N1 = B2 = B2 N1 = B2(M1 −M) , (C.23)

M1YA1 = M1Y (Y ′M1Y )−1Y ′M1 = P̄(M1Y ) , (C.24)

C1 M1 = B2 M1 −B1 M1 = B2 −B1 = C1 , C1X1 = C1M1 X1 = 0 , (C.25)

B1Y = (Y ′M1Y )−1Y ′M1Y = IG = (Y ′N1Y )−1Y ′N1Y = B2Y , (C.26)

C1Y = B2Y −B1Y = 0 , (C.27)

C1 P̄[M1Y ] = [(Y ′N1Y )−1Y ′N1 − (Y ′M1Y )−1Y ′M1]M1Y (Y ′M1Y )−1Y ′M1

= [(Y ′N1Y )−1Y ′N1Y − (Y ′M1Y )−1Y ′M1Y ] (Y ′M1Y )−1Y ′M1

= (IG − IG)(Y ′M1Y )−1Y ′M1 = 0 , (C.28)

C1 M̄[M1Y ] = C1 [IT − P̄[M1Y ] = C1 , (C.29)

M1 M̄[Ȳ ]M1 = M̄[Ȳ ] , M1 M̄[Z]M1 = M̄[Z] , (C.30)

M1ΨR M1 =
1
T
{M1 M̄[Ȳ ]M1 −M1 M̄[Z]M1} = ΨR , M1ΛRM1 =

1
T

M1M̄[Z]M1 = ΛR , (C.31)

so (C.3) - (C.6) are established. (C.7) and (C.8) follow directly from (3.15) and the definitions of
B1, B2, C1 and Ψ0 . We get (C.9) and (C.10) by using the definitions of β̂ and β̃ in (3.4) - (3.5).
(C.11) follows on using (3.4) and (3.5). (C.12) comes from the fact that the residuals M1(y−Y β̂ )
are obtained by minimizing ‖y−Y β̂ −X1γ‖2 with respect to γ , or equivalently ‖y−Y β −X1γ‖2

with respect to β and γ . (C.13) follows from (C.12) and noting that M = M M1. Similarly, the first
identity in (C.14) comes from the fact that the residuals M1 P(y−Y β̃ ) = M1(y−PY β̃ ) are obtained
by minimizing ‖y−PY β̃ −X1γ‖2 with respect to γ , or equivalently by minimizing ‖y−PY β −X1γ‖2

with respect to β and γ . The others follow on noting that N1 = M1 P = PM1 and

M1 M̄[M1PY ]P = M̄[PM1Y ]M1P = M̄[PM1Y ]PM1 . (C.32)
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To get (C.15) and (C.16), we note that

ũ = y−Y β̃ −X1γ̃ = M1(y−Y β̃ ) = M1 [IT −YA2]y = [IT −M1YA2](M1 y) = N2(M1 y) (C.33)

hence

σ̃2 =
1
T

ũ′ũ =
1
T

(y−Y β̃ )′M1M1(y−Y β̃ ) =
1
T

(M1 y)′N′
2N2(M1 y) . (C.34)

Further, using (3.11) - (3.3 ), (C.12) and (C.14), we see that:

σ̂2 =
1
T

(y−Y β̂ )′M1(y−Y β̂ ) =
1
T

y′M̄[Ȳ ]y =
1
T

y′M1 M̄[M1Y ]y =
1
T

(M1 y)′M̄[M1Y ](M1 y) , (C.35)

σ̃2
1 =

1
T

(y−Y β̃ )′N1(y−Y β̃ ) =
1
T

(y−Y β̃ )′PM1 P(y−Y β̃ )

=
1
T

y′N′
1M̄[N1Y ]N1 y =

1
T

(M1 y)′PM̄[PM1Y ]P(M1 y) , (C.36)

σ̃2
2 = σ̂2 − (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) =

1
T
{y′M1 M̄[M1Y ]y}− y′Ψ0 y

= (M1 y)′
{

1
T

M̄[M1Y ]−Ψ0

}

(M1 y) , (C.37)

so (3.11) - (3.13) are established. Finally, (C.20) and (C.21) follow by observing that M1M̄[Ȳ ] =
M̄[Ȳ ]M1 = M̄[Ȳ ]M1 and M1M̄[Z] = M1M̄[Z] = M̄[Z], so that M1P̄

[

M̄[Ȳ ]X2
]

M1 = P̄
[

M̄[Ȳ ]X2
]

and
M1M̄[Z]M1 = M̄[Z].

Using Lemma C.1, we can now prove Proposition 4.1.

PROOF OF PROPOSITION 4.1 We first note that

β̃ − β̂ = (B2 −B1)y = C1 y , (C.38)

(β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = y′C′
1 ∆̂−1C1 y = y′Ψ0 y , (C.39)

so that, by the definitions (3.1) - (3.3),

Tl = κ l(β̃ − β̂ )′Σ̃−1
l (β̃ − β̂ ) = κ l

(β̃ − β̂ )′∆̂−1(β̃ − β̂ )

σ̃2
l

=
y′Ψ0 y

σ̃2
l

, l = 1, 2, 3, 4, (C.40)

Hi = T (β̃ − β̂ )′Σ̂−1
i (β̃ − β̂ ) = T

(β̃ − β̂ )′∆̂−1(β̃ − β̂ )

σ̂2
i

=
y′Ψ0 y

σ̂2
i

, i = 2, 3, (C.41)
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where, using Lemma C.1,

σ̃2
1 =

1
T

(y−Y β̃ )′N1(y−Y β̃ ) =
1
T

y′N1 M̄[N1Y ]N1 y = y′Λ1 y , (C.42)

σ̃2
2 = y′ M1

{

1
T

M̄[M1Y ]−Ψ0

}

(M1 y) = y′Λ2 y , (C.43)

σ̃2
3 = σ̃2 =

1
T

y′ M1N′
2N2M1 y = y′Λ3 y , (C.44)

σ̃2
4 = σ̂2 =

1
T

y′M̄[Ȳ ]y =
1
T

y′ M1 M̄[M1Y ]M1 y = y′Λ4 y , (C.45)

σ̂2
2 = σ̃2 = y′Λ3 y , σ̂2

3 = σ̂2 = y′Λ4 y . (C.46)

For H1, we have

H1 = T (β̃ − β̂ )′Σ̂−1
1 (β̃ − β̂ ) = T y′C′

1 Σ̂−1
1 C1 y = T (y′Ψ1 [y]y) (C.47)

where
Σ̂1 = σ̃2Ω̂−1

IV − σ̂2Ω̂−1
LS = (y′Λ3 y)Ω̂−1

IV − (y′Λ4 y)Ω̂−1
LS . (C.48)

The result for R follows directly by using (3.3).

In order to characterize the null distributions of the test statistics (Theorem 4.2), it will be useful
to first spell out some algebraic properties of the weighting matrices in Proposition 4.1. This is done
by the following lemma.

Lemma C.2 PROPERTIES OF WEIGHTING MATRICES IN EXOGENEITY STATISTICS. The matri-
ces Ψ0 , Λ1, Λ2, Λ4, ΨR and ΛR in (4.1) - (4.6) satisfy the following identities:

Λ2 = Λ4 −Ψ0 , C1 Λ1 = C1 Λ2 = Ψ0 Λ1 = Ψ0 Λ2 = ΨR ΛR = 0 , (C.49)

C1 Λ4 =
1
T

C1 , Ψ0 Λ4 =
1
T

Ψ0 , (C.50)

M1 Λl M1 = Λl , l = 1, . . . , 4 . (C.51)

Further, the matrices TΨ0 , TΛ1, TΛ2, TΛ4, TΨR and TΛR are symmetric idempotent.

PROOF OF LEMMA C.2 To get (C.49) - (C.50), we observe that:

Λ2 = M1

(

1
T

M̄[M1Y ]−Ψ0

)

M1 = Λ4 −M1Ψ0M1 = Λ4 −Ψ0 , (C.52)

C1N1 P̄[N1Y ] =
1
T

[B2 −B1]N1N1Y Ω̂−1
IV Y ′N1 =

1
T

[Ω̂−1
IV Y ′N1 − Ω̂−1

LS Y ′M1]N1Y Ω̂−1
IV Y ′N1
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=
1
T

[Ω̂−1
IV Y ′N1Y Ω̂−1

IV Y ′− Ω̂−1
LS Y ′N1Y Ω̂−1

IV Y ′]N1 =
1
T

[Ω̂−1
IV Y ′− Ω̂−1

LS Y ′]N1

=
1
T

[Ω̂−1
IV Y ′N1 − Ω̂−1

LS Y ′M1]N1 = [B2 −B1]N1 = C1N1 , (C.53)

C1M1 P̄[M1Y ] = C1M1Y (Y ′M1Y )−1Y ′M1 = 0 , (C.54)

M̄[Ȳ ]M̄[Z] = M̄[Z] , (C.55)

hence

C1Λ1 = C1

(

1
T

N1 M̄[N1Y ]N1

)

=
1
T

C1N1 M̄[N1Y ]N1 =
1
T

C1N1
(

IT − P̄[N1Y ]
)

N1 = 0 , (C.56)

C1Λ2 = C1M1

(

1
T

M̄[M1Y ]−Ψ0

)

M1 =
1
T

C1M1M̄[M1Y ]M1 −C1M1Ψ0M1

=
1
T

C1M1
(

IT − P̄[M1Y ]
)

M1 −C1Ψ0 =
1
T

C1 −
1
T

C1 = 0 , (C.57)

C1Λ4 =
1
T

C1M1M̄[M1Y ]M1 =
1
T

C1M1M̄[M1Y ] =
1
T

C1 , (C.58)

Ψ0Λ4 =
1
T

C′
1∆̂−1C1 M1M̄[M1Y ]M1 =

1
T

C′
1∆̂−1C1 M1M̄[M1Y ] =

1
T

C′
1∆̂−1C1 =

1
T

Ψ0 , (C.59)

Ψ0Λ2 = Ψ0 M1

(

1
T

M̄[M1Y ]−Ψ0

)

M1 = Ψ0 (Λ4 −Ψ0) =
1
T

Ψ0 −
1
T

Ψ0 = 0 , (C.60)

ΨRΛR =
1

T 2 {M̄[Ȳ ]− M̄[Z]}M̄[Z] = 0 . (C.61)

(C.51) follow directly from the idempotence of M1 and the definitions of Λl , l = 1, . . . , 4. Finally,
the idempotence and symmetry of the weight matrices can be checked as follows:

(T Ψ0)(T Ψ0) = T C′
1∆̂−1C1C′

1∆̂−1C1 = T 2C′
1∆̂−1

(

1
T

∆̂
)

∆̂−1C1 = T C′
1∆̂−1C1

= T Ψ0 = T Ψ ′
0
, (C.62)

(T Λ1)(T Λ1) =
(

N1 M̄[N1Y ]N1
)(

N1 M̄[N1Y ]N1
)

= N1 M̄[N1Y ]N1 = T Λ1 = T Λ ′
1 , (C.63)

(T Λ4)(T Λ4) = M1M̄[M1Y ]M1 M1 M̄[M1Y ]M1 = M1M̄[M1Y ]M1 = T Λ4 = T Λ ′
4 , (C.64)

(T Λ2)(T Λ2) = T 2 (Λ4 −Ψ0)(Λ4 −Ψ0) = T 2 (Λ4 Λ4 −Λ4Ψ0 −Ψ0Λ4 +Ψ0Ψ0)

= T 2
(

1
T

Λ4 −
2
T

Ψ0 +
1
T

Ψ0

)

= T (Λ4 −Ψ0) = T Λ2 = T Λ ′
2 , (C.65)

(T ΨR)(T ΨR) = {M̄[Ȳ ]− M̄[Z]}{M̄[Ȳ ]− M̄[Z]} = M̄[Ȳ ]− M̄[Z] = T ΨR = T Ψ ′
R , (C.66)
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(T ΛR)(T ΛR) = M̄[Z]M̄[Z] = M̄[Z] = T ΛR = T Λ ′
R
. (C.67)

PROOF OF THEOREM 4.2 Using Lemma C.1, we first note the following identities:

B1Y = (Y ′M1Y )−1Y ′M1Y = IG = (Y ′N1Y )−1Y ′N1Y = B2Y , (C.68)

M̄[M1Y ]M1Y = M̄[N1Y ]N1Y = 0 , B1X1 = B2X1 = 0 , N1 X1 = M1 X1 = 0 , (C.69)

N2M1Y = (IT −M1YA2)M1Y = (M1 −M1YA2)Y = M1(Y −YA2Y ) = 0 , N2M1X1 = 0 , (C.70)

M̄[Ȳ ]Y = M̄[Z]Y = 0 , M̄[Ȳ ]X1 = M̄[Z]X1 = 0 , P̄
[

M̄[Ȳ ]X2
]

M̄[Ȳ ] = M̄[Ȳ ] P̄
[

M̄[Ȳ ]X2
]

M̄[Ȳ ] . (C.71)

Then
C1 y = (B2 −B1)(Y β +X1γ +u) = C1u , (C.72)

y′Ψ0 y = y′C′
1∆̂−1C1 y = u′C′

1∆̂−1C1 u = u′Ψ0 u , (C.73)

y′Λ1 y =
1
T

y′ N1 M̄[N1Y ]N1 y =
1
T

u′ N1 M̄[N1Y ]N1 u = u′Λ1 u , (C.74)

y′Λ2 y =
1
T

y′ M1 (M̄[M1Y ]−Ψ0)M1 y =
1
T

u′ M1 (M̄[M1Y ]−Ψ0)M1 u = u′Λ2 u , (C.75)

y′Λ3 y =
1
T

y′ M1 N′
2N2M1 y =

1
T

u′ M1 N′
2N2M1 u , (C.76)

y′Λ4 y =
1
T

y′ M̄[Ȳ ]y =
1
T

u′ M̄[Ȳ ]u = u′Λ4 u , (C.77)

y′ΨR y =
1
T

y′ P̄
[

M̄[Ȳ ]X2
]

M̄[Ȳ ]y =
1
T

y′ M̄[Ȳ ] P̄
[

M̄[Ȳ ]X2
]

M̄[Ȳ ]y

=
1
T

u′ M̄[Ȳ ] P̄
[

M̄[Ȳ ]X2
]

M̄[Ȳ ]u =
1
T

u′ P̄
[

M̄[Ȳ ]X2
]

M̄[Ȳ ]u = u′ΨR u , (C.78)

σ̂2
R =

1
T

y′ M̄[Z]y =
1
T

u′ M̄[Z]u . (C.79)

Further, when a = 0, we have u = σ1(X̄)ε , and the expressions in (4.7) - (4.8) follow from (4.1) -
(4.3) in Proposition 4.1 once u is replaced by σ1(X̄)ε in (C.72) - (C.79). σ1(X̄) disappears because
it can be factorized in both the numerator and the denominator of each statistic.

PROOF OF PROPOSITION 5.1 We must study how the statistics defined in (3.1) - (3.3) change
when y and Y are replaced by y∗ = yR11 +Y R21 and Y ∗ = Y R22. This can be done by looking at the
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way the relevant variables in (3.4) - (3.14) change. We first note that

Ω̂ ∗
IV =

1
T

Y ∗′N1Y ∗ = (Y R22)
′N1(Y R22) = R′

22Ω̂IV R22 , Ω̂ ∗
LS =

1
T

Y ∗′M1Y ∗ = R′
22Ω̂LSR22 , (C.80)

hence
∆̂ ∗ = (Ω̂ ∗

IV )−1 − (Ω̂ ∗
LS)

−1 = R−1
22 (Ω̂−1

IV − Ω̂−1
LS )(R−1

22 )′ = R−1
22 ∆̂(R−1

22 )′ . (C.81)

Using Lemma C.1, we also get:

B∗
1 = (Y ∗′M1Y ∗)−1Y ∗′M1 = [(Y R22)

′M1(Y R22)]
−1(Y R22)

′M1 = R−1
22 (Y ′M1Y )−1Y ′M1

= R−1
22 B1 , (C.82)

B∗
2 = (Y ∗′N1Y ∗)−1Y ∗′N1 = R−1

22 (Y ′N1Y )−1Y ′N1 = R−1
22 B2 , (C.83)

C∗
1 = B∗

2 −B∗
1 = R−1

22 C1 , C∗
1Y = R−1

22 C1Y = 0 , (C.84)

β̂
∗
= B∗

1y∗ = R−1
22 B1(yR11 +Y R21) = R11R−1

22 β̂ +R−1
22 R21 , (C.85)

β̃ ∗
= B∗

2y∗ = R11R−1
22 β̃ +R−1

22 R21 , (C.86)

β̃ ∗
− β̂

∗
= C∗

1 y∗ = R11R−1
22 (β̃ − β̂ ) , (C.87)

û∗ = M1(y
∗−Y ∗β̂

∗
) = M1

(

yR11 +Y R21 −Y R22(R11R−1
22 β̂ +R−1

22 R21)
)

= R11 M1(y−Y β̂ ) = R11 û , (C.88)

ũ∗ = M1(y
∗−Y ∗β̃ ∗

) = M1
(

yR11 +Y R21 −Y R22(R11R−1
22 β̃ +R−1

22 R21)
)

= R11 ũ , (C.89)

hence, since N1X1 = 0,

σ̂∗2 =
1
T

û∗′û∗ = R2
11 σ̂2 , σ̃∗2 =

1
T

ũ∗′ũ∗ = R2
11 σ̃2 , (C.90)

σ̃∗2
1 =

1
T

(y∗−Y ∗β̃ ∗
)′N1(y

∗−Y ∗β̃ ∗
) =

1
T

(y∗−Y ∗β̃ ∗
−X1γ̃∗)′N1(y

∗−Y ∗β̃ ∗
−X1γ̃∗)

=
1
T

ũ∗′N1 ũ∗ = R2
11

1
T

ũ′N1 ũ = R2
11σ̃2

1 , (C.91)

σ̃∗2
2 = σ̂∗2 − (β̃ ∗

− β̂
∗
)′(∆̂ ∗)−1(β̃ ∗

− β̂
∗
)

= R2
11 σ̂2 − (β̃ − β̂ )′(R11R−1

22 )′R′
22∆̂−1R22(R11R−1

22 )(β̃ − β̂ )

= R2
11[σ̂

2 − (β̃ − β̂ )′∆̂−1(β̃ − β̂ )] = R2
11 σ̃2

2 , (C.92)

Σ̃ ∗
i = σ̃∗2

i ∆̂ ∗ = (R2
11σ̃2

i )R
−1
22 ∆̂(R−1

22 )′ = R2
11 R−1

22 (σ̃2
i ∆̂)(R−1

22 )′

= R2
11 R−1

22 Σ̃i (R
−1
22 )′, i = 1, 2, 3, 4 , (C.93)
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Σ̂ ∗
j = R2

11 R−1
22 Σ̂ j(R

−1
22 )′ , j = 1,2, 3. (C.94)

It follows that the Ti and H j exogeneity test statistics based on the transformed data are identical
to those based on the original data:

T
∗

i = κ i(β̃
∗
− β̂

∗
)′(Σ̃ ∗

i )−1(β̃ ∗
− β̂

∗
)

= (β̃ − β̂ )′(R11R−1
22 )′[R2

11 R−1
22 Σ̃i (R

−1
22 )′]−1(R11R−1

22 )(β̃ − β̂ )

= κ i(β̃ − β̂ )′Σ̃−1
i (β̃ − β̂ ) = Ti , i = 1, 2, 3, 4, (C.95)

H
∗

j = T (β̃ ∗
− β̂

∗
)′(Σ̂ ∗

j )
−1(β̃ ∗

− β̂
∗
)

= T (β̃ − β̂ )′(R11R−1
22 )′[R2

11 R−1
22 Σ̂ j (R

−1
22 )′]−1(R11R−1

22 )(β̃ − β̂ ) = H j , j = 1, 2, 3. (C.96)

Finally, the invariance of the statistic R is obtained by observing that

y∗′M̄[Z∗]y∗ = R2
11 y′M̄[Z]y , y∗′M̄[Ȳ ∗]y∗ = R2

11 y′M̄[Ȳ ]y , (C.97)

where Z∗ = [Y ∗, X1, X2] and Ȳ ∗ = [Y ∗, X1], so R2
11 cancels out in R

PROOF OF THEOREM 6.1 Since u = Va+σ1(X̄)ε , we can use the identities (C.72) - (C.79) and
replace y by Va+σ1(X̄)ε in (4.1) - (4.1). The expressions (6.2) - (6.4) then follow through division
of the numerator and denominator of each statistic by σ1(X̄).

PROOF OF THEOREM 6.2 This result follows by applying the invariance property of Proposition
5.1 with R defined as in (5.2). y is then replaced by y∗ = X1γ +[V −g(X1, X2, X3, V, Π̄)]a + e [see
(5.5)], and the identities (C.72) - (C.79) hold with u replaced by

u∗ = [V −g(X1, X2, X3, V, Π̄)]a+ e . (C.98)

Further, in view of (C.5) and (4.4) - (3.14), each one of the matrices Ψ0 , Λ1, . . . , Λ4, Ψ1 , ΨR and ΛR

remains the same if it is pre- and postmultiplied by M1, i.e.

Ψ0 = M1Ψ0 M1 , Λl = M1ΛiM1, i = 1, 2, 3, 4, (C.99)

Ψ1 = M1Ψ1 M1 , ΨR = M1ΨR M1 , ΛR = M1ΛRM1 , (C.100)

so u∗ can in turn be replaced by

M1u∗ = −M1[V −g(X1, X2, X3, V, Π̄)]a+M1 e (C.101)

in (C.72) - (C.79). Upon division of the numerator and denominator of each statistic by σ1(X̄), we
get the expressions (6.6) - (6.8).
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PROOF OF THEOREM 6.3 The result follows from well known properties of the normal and
chi-square distributions: if x ∼ Nn[µ, In] and A is a fixed idempotent n× n matrix of rank r, then
x′Ax ∼ χ2[r ; µ ′A µ] . Conditional on X̄ and V, Ψ0 is fixed, and

y⊥∗ (ā ) = µ̄⊥
y∗(ā )+M1ε = M1{[V −g(X1, X2, X3, V, Π̄)]ā+ ε} = M1(µ + ε) (C.102)

where µ = [V − g(X1, X2, X3, V, Π̄)]ā is fixed and ε ∼ Nn[µ, In]. By Lemmas C.1 and C.2, TΨ0 ,
TΛ1, TΛ2, TΛ4, TΨR and TΛR are symmetric idempotent, and each of these matrices remain invari-
ant through by pre- and post-multiplication by M1 [M1Ψ0 M1 = Ψ0 , etc.]. Thus

ST [y⊥∗ (ā ),Ψ0 ] = T y⊥∗ (ā )′Ψ0y⊥∗ (ā ) = (µ + ε)′M1(T Ψ0)M1(µ + ε) (C.103)

= (µ + ε)′(T Ψ0)(µ + ε) ∼ χ2[rank(T Ψ0) ; µ ′(T Ψ0)µ] (C.104)

where

rank(T Ψ0) = tr(T Ψ0) = tr(T C′
1∆̂−1C1) = tr(T ∆̂−1C1C′

1) = tr(T ∆̂−1T−1∆̂) = G , (C.105)

µ ′(T Ψ0)µ = µ ′M1(T Ψ0)M1 µ = µ̄⊥
y∗(ā )′(T Ψ0)µ̄⊥

y∗(ā ) = ST [µ̄⊥
y∗(ā ),Ψ0] = δ (ā, Ψ0) . (C.106)

The proofs for the other quadratic forms are similar, with the following degrees of freedom vary:

rank(T Λ1) = tr{N1 M̄[N1Y ]N1} = tr{N1 }− tr{P̄[N1Y ]} = tr{M1 −M}− tr{N1Y (Y ′N1Y )−1Y ′N1}

= (T − k1)− (T − k1 − k2)− tr{(Y ′N1Y )−1Y ′N1Y} = k2 −G , (C.107)

rank(T Λ2) = tr{T M1
(

T−1M̄[M1Y ]−Ψ0

)

M1} = tr{M1M̄[M1Y ]M1}− tr{T Ψ0}

= tr{M1}− tr{P̄[M1Y ]}− tr{T Ψ0} = T − k1 −2G , (C.108)

rank(T Λ4) = tr{M1M̄[M1Y ]M1} = tr{M1}− tr{P̄[M1Y ]} = T − k1 −G , (C.109)

rank(T ΨR) = tr{M̄[Ȳ ]− M̄[Z]} = (T − k1 −G)− (T − k1 −G− k2) = k2 , (C.110)

rank(T ΛR) = tr(T ΛR) = tr{M̄[Z]} = T −G− k1 − k2 . (C.111)

The independence properties follow from the orthogonalities given in (C.49) and the normality
assumption.

PROOF OF COROLLARY 6.4 These results directly from Theorem 6.3 and the definition of the
doubly noncentral F-distribution.
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